[go: up one dir, main page]

login
Search: a001958 -id:a001958
     Sort: relevance | references | number | modified | created      Format: long | short | data
Winning positions in the u-pile of the 4-Wythoff game with i=1.
(Formerly M0943 N0354)
+10
5
0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83
OFFSET
0,3
COMMENTS
See Connell (1959) for further information.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ian G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181-190
FORMULA
a(n) = floor( (n+1/4)*(sqrt(5)-1) ). - R. J. Mathar, Feb 14 2011
MATHEMATICA
Table[Floor[(n + 1/4)*(Sqrt[5] - 1)], {n, 0, 100}] (* T. D. Noe, Aug 17 2012 *)
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Edited by Hugo Pfoertner, Dec 27 2021
STATUS
approved
a(n) = floor((n+2/3)*(5+sqrt(13))/2); v-pile positions in the 3-Wythoff game.
(Formerly M1735 N0687)
+10
4
2, 7, 11, 15, 20, 24, 28, 32, 37, 41, 45, 50, 54, 58, 63, 67, 71, 76, 80, 84, 88, 93, 97, 101, 106, 110, 114, 119, 123, 127, 131, 136, 140, 144, 149, 153, 157, 162, 166, 170, 174, 179, 183, 187, 192, 196, 200, 205, 209, 213, 218, 222, 226, 230, 235, 239, 243, 248
OFFSET
0,1
COMMENTS
3-Wythoff game, i=2, the v-pile positions in the Connell terminology. - R. J. Mathar, Feb 14 2011
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ian G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181-190.
FORMULA
a(n) = floor((n+2/3)*(5+sqrt(13))/2). - R. J. Mathar, Feb 14 2011
MATHEMATICA
Table[Floor[(n + 2/3)*(5 + Sqrt[13])/2], {n, 0, 100}] (* T. D. Noe, Aug 17 2012 *)
CROSSREFS
Complement of A001957.
KEYWORD
nonn
EXTENSIONS
New name from Hugo Pfoertner, Dec 27 2021
STATUS
approved
u-pile numbers for the 3-Wythoff game with i=2.
(Formerly M0541)
+10
3
0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 58, 59, 60, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 88
OFFSET
0,2
COMMENTS
See Connell (1959) for further information.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ian G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181-190
FORMULA
a(n) = floor( (n+2/3)*(sqrt(13)-1)/2 ). - R. J. Mathar, Feb 14 2011
MATHEMATICA
Table[Floor[(n + 2/3)*(Sqrt[13] - 1)/2], {n, 0, 100}] (* T. D. Noe, Aug 17 2012 *)
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Edited by Hugo Pfoertner, Dec 27 2021
STATUS
approved
u-pile positions in the 3-Wythoff game with i=1.
(Formerly M2302 N0908)
+10
2
0, 1, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 59, 60, 61, 62, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87
OFFSET
0,3
COMMENTS
See Connell (1959) for further information.
The complement is A001960. - Omar E. Pol, Jan 06 2009
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ian G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181-190.
FORMULA
a(n) = floor((n+1/3)*(sqrt(13)-1)/2). - R. J. Mathar, Feb 14 2011
MATHEMATICA
Table[Floor[(n + 1/3)*(Sqrt[13] - 1)/2], {n, 0, 100}] (* T. D. Noe, Aug 17 2012 *)
KEYWORD
nonn,easy
EXTENSIONS
Edited by N. J. A. Sloane, Dec 27 2021
STATUS
approved

Search completed in 0.010 seconds