[go: up one dir, main page]

login
Search: a001465 -id:a001465
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of degree-n odd permutations of order dividing 4.
+10
6
0, 0, 1, 3, 12, 40, 120, 336, 2128, 13392, 118800, 850960, 6004416, 38408448, 260321152, 1744135680, 17067141120, 167200393216, 1838196972288, 18345298804992, 181218866222080, 1673804042803200, 16992835499329536
OFFSET
0,4
LINKS
Lev Glebsky, Melany Licón, Luis Manuel Rivera, On the number of even roots of permutations, arXiv:1907.00548 [math.CO], 2019.
FORMULA
E.g.f.: 1/2*exp(x + 1/2*x^2 + 1/4*x^4) - 1/2*exp(x - 1/2*x^2 - 1/4*x^4).
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 14 2001
STATUS
approved
Number of cyclic subgroups of prime order in the Alternating Group A_n.
+10
4
0, 0, 1, 7, 31, 121, 526, 2227, 9283, 54931, 694156, 6104011, 76333687, 872550043, 7491293356, 49469173951, 1571562887071, 24729107440927, 584036983443568, 8662243014551731, 87570785839885951, 1147293350653737211, 66175018194591458692, 1378758190497550145383
OFFSET
1,4
LINKS
FORMULA
a(n) = A186202(n) - A001465(n). - Andrew Howroyd, Jul 04 2018
MATHEMATICA
a[n_] := Sum[If[PrimeQ[p], Sum[If[p > 2 || Mod[k, 2] == 0, n!/(k!*(n - k*p)!*p^k)/(p - 1), 0], {k, 1, n/p}], 0], {p, 2, n}];
Array[a, 24] (* Jean-François Alcover, Jul 06 2018, after Andrew Howroyd *)
PROG
(PARI) a(n)={sum(p=2, n, if(isprime(p), sum(k=1, n\p, if(p>2||k%2==0, n!/(k!*(n-k*p)!*p^k)))/(p-1)))}
CROSSREFS
Cf. A001465, A181955, A186202 (symmetric group).
KEYWORD
nonn
AUTHOR
Olivier Gérard, Apr 03 2012
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Jul 04 2018
STATUS
approved
Number of degree-n odd permutations of order dividing 6.
+10
3
0, 0, 1, 3, 6, 30, 270, 1386, 6048, 46656, 387180, 2469060, 17204616, 158065128, 1903506696, 18887563800, 163657221120, 2095170230016, 30792968596368, 346564643468976, 3905503235814240, 58609511127871200, 866032039742528736
OFFSET
0,4
LINKS
Lev Glebsky, Melany Licón, Luis Manuel Rivera, On the number of even roots of permutations, arXiv:1907.00548 [math.CO], 2019.
FORMULA
E.g.f.: exp(x + x^3/3)*sinh(x^2/2 + x^6/6).
Linear recurrence of order 12 whose coefficients are polynomials in n of degree up to 15: see link. - Robert Israel, Jul 13 2018
MAPLE
Egf:= exp(x + x^3/3)*sinh(x^2/2 + x^6/6):
S:= series(Egf, x, 31):
seq(coeff(S, x, j)*j!, j=0..30); # Robert Israel, Jul 13 2018
MATHEMATICA
With[{m=30}, CoefficientList[Series[Exp[x + x^3/3]*Sinh[x^2/2 + x^6/6], {x, 0, m}], x]*Range[0, m]!] (* Vincenzo Librandi, Jul 02 2019 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0, 0], Vec(serlaplace( exp(x + x^3/3)*sinh(x^2/2 + x^6/6) ))) \\ G. C. Greubel, Jul 02 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^3/3)*Sinh(x^2/2 + x^6/6) )); [0, 0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, Jul 02 2019
(Sage) m = 30; T = taylor(exp(x + x^3/3)*sinh(x^2/2 + x^6/6), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jul 02 2019
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 14 2001
STATUS
approved
Weighted sum of all cyclic subgroups of prime order in the Alternating group.
+10
3
0, 0, 3, 18, 90, 390, 2205, 10878, 45318, 256350, 5530305, 55869330, 865551258, 9892489698, 78223384785, 470010394350, 24530527675230, 409760923017198, 10595007772540113, 160826214447439770, 1585844008081570650, 16787211082925012730, 1362379219330719093273
OFFSET
1,3
COMMENTS
Sum of p for all p-subgroups in Alt_n.
LINKS
FORMULA
a(n) = A181954(n) - 2*A001465(n). - Andrew Howroyd, Jul 03 2018
PROG
(PARI) a(n)={sum(p=2, n, if(isprime(p), sum(k=1, n\p, if(p>2||k%2==0, n!/(k!*(n-k*p)!*p^k)))*p/(p-1)))} \\ Andrew Howroyd, Jul 03 2018
CROSSREFS
Cf. A181951 (number of such subgroups).
Cf. A181954 (symmetric case).
Cf. A001465.
KEYWORD
nonn
AUTHOR
Olivier Gérard, Apr 03 2012
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Jul 03 2018
STATUS
approved
Auxiliary sequence for calculation of number of even permutations of degree n and order exactly 2.
+10
2
0, -1, -3, -3, 5, 15, -21, -133, 27, 1215, 935, -12441, -23673, 138047, 469455, -1601265, -9112561, 18108927, 182135007, -161934625, -3804634785, -404007681, 83297957567
OFFSET
1,3
REFERENCES
V. Jovovic, Some combinatorial characteristics of symmetric and alternating groups (in Russian), Belgrade, 1980, unpublished.
FORMULA
a(n) = c(n, 2), where c(n, d)=Sum_{k=1..n} (-1)^(k+1)*(n-1)!/(n-k)! *Sum_{l:lcm{k, l}=d} c(n-k, l), c(0, 1)=1.
a(n)=2*A048099(n)-A001189(n)=A048099(n)-A001465(n) a(n)=(-1)^n*A001464(n)-1 a(n)=a(n-1)-(n-1)*(a(n-2)+1) E.g.f.: -e^x+e^(x-(1/2)*x^2) - Matthew J. White (mattjameswhite(AT)hotmail.com), Mar 02 2006
a(n) = Sum((-1)^j*n!/(2^j*j!*(n-2*j)!),j=1..floor(n/2)). - Vladeta Jovovic, Mar 06 2006
CROSSREFS
KEYWORD
sign
STATUS
approved
Number of degree-n odd permutations of order exactly 4.
+10
1
0, 0, 0, 0, 6, 30, 90, 210, 1680, 12096, 114660, 833580, 5928120, 38112360, 259194936, 1739195640, 17043237120, 167089937280, 1837707369840, 18342985021776, 181206905922720, 1673742164139360, 16992525855006240
OFFSET
0,5
FORMULA
E.g.f.: - 1/2*exp(x + 1/2*x^2) + 1/2*exp(x - 1/2*x^2) + 1/2*exp(x + 1/2*x^2 + 1/4*x^4) - 1/2*exp(x - 1/2*x^2 - 1/4*x^4).
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 14 2001
STATUS
approved
Number of degree-n odd permutations of order exactly 6.
+10
1
0, 0, 0, 0, 0, 20, 240, 1260, 5600, 45360, 383040, 2451680, 17128320, 157769040, 1902380480, 18882623760, 163633317120, 2095059774080, 30792478993920, 346562329685760, 3905491275514880, 58609449249207360, 866031730098205440
OFFSET
0,6
FORMULA
E.g.f.: - 1/2*exp(x + 1/2*x^2) + 1/2*exp(x - 1/2*x^2) + 1/2*exp(x + 1/2*x^2 + 1/3*x^3 + 1/6*x^6) - 1/2*exp(x - 1/2*x^2 + 1/3*x^3 - 1/6*x^6).
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 14 2001
STATUS
approved

Search completed in 0.008 seconds