[go: up one dir, main page]

login
A053505
Number of degree-n permutations of order dividing 30.
35
1, 1, 2, 6, 18, 90, 540, 3060, 20700, 145980, 1459800, 13854600, 140059800, 1514748600, 15869034000, 285268878000, 4109761962000, 59488383690000, 935767530036000, 13364309726748000, 240338216104020000, 4540941256642020000, 79739974380153240000
OFFSET
0,3
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
LINKS
L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168.
FORMULA
E.g.f.: exp(x + x^2/2 + x^3/3 + x^5/5 + x^6/6 + x^10/10 + x^15/15 + x^30/30).
MAPLE
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 3, 5, 6, 10, 15, 30])))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
MATHEMATICA
a[n_]:= a[n] = If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, j-1}]*a[n-j], {j, {1, 2, 3, 5, 6, 10, 15, 30}}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^3/3 +x^5/5 +x^6/6 + x^10/10 +x^15/15 +x^30/30], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace( exp(x +x^2/2 +x^3/3 +x^5/5 + x^6/6 +x^10/10 +x^15/15 +x^30/30) )) \\ G. C. Greubel, May 15 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +x^2/2 +x^3/3 +x^5/5 +x^6/6 +x^10/10 +x^15/15 +x^30/30) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
(Sage) m = 30; T = taylor(exp(x +x^2/2 +x^3/3 +x^5/5 +x^6/6 +x^10/10 +x^15/15 +x^30/30), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
CROSSREFS
Column k=30 of A008307.
Sequence in context: A273001 A118455 A165774 * A000138 A028857 A052687
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 15 2000
STATUS
approved