[go: up one dir, main page]

login
Search: a001113 -id:a001113
     Sort: relevance | references | number | modified | created      Format: long | short | data
Hooley's Delta function: maximum number of divisors of n in [u, eu] for all u. (Here e is Euler's number 2.718... = A001113.)
+20
5
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 2, 3, 1, 2, 1, 4, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 4, 1, 2, 2, 2, 2, 2, 1, 2, 1, 3, 1, 4, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 2, 2
OFFSET
1,2
COMMENTS
This function measures the tendency of divisors of a number to cluster.
Tenenbaum (1985) proves that a(1) + ... + a(n) < n exp(c sqrt(log log n log log log n)) for some constant c > 0 and all n > 16. In particular, the average order of a(n) is O((log n)^k) for any k > 0.
Maier & Tenenbaum show that (log log n)^(g + o(1)) < a(n) < (log log n)^(log 2 + o(1)) for almost all n, with g = log 2/log((1-1/log 27)/(1-1/log 3)) = 0.338....
For generalizations, see de la Bretèche & Tenenbaum, Brüdern, Hall & Tenenbaum, and Caballero.
REFERENCES
R. R. Hall and G. Tenenbaum, On the average and normal orders of Hooley's ∆-function, J. London Math. Soc. (2), Vol. 25, No. 3 (1982), pp. 392-406.
R. R. Hall and G. Tenenbaum, Divisors. Cambridge Tracts in Mathematics, 90. Cambridge University Press, Cambridge, 1988.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
R. de la Bretèche and G. Tenenbaum, Oscillations localisées sur les diviseurs, J. Lond. Math. Soc. 2 85:3 (2012), pp. 669-693.
Régis de la Bretèche and Gérald Tenenbaum, Two upper bounds for the Erdős--Hooley Delta-function, arXiv preprint (2022). arXiv:2210.13897 [math.NT]
Jörg Brüdern, Daniel's twists of Hooley's Delta function, Contributions in Analytic and Algebraic Number Theory, Springer Proceedings in Mathematics 9 (2012), pp 31-82.
Paul Erdős, On abundant-like numbers, Canad. Math. Bull. 17 (1974), pp. 599-602.
Paul Erdős and Jean-Louis Nicolas, Méthodes probabilistes et combinatoires en théorie des nombres, Bulletin des Sciences Mathématiques 2 (1976), pp. 301-320.
P. Erdős and J.-L. Nicolas, Répartition des nombres superabondants, Bull. Soc. Math. France 103 (1975), pp. 65-90.
R. R. Hall and G. Tenenbaum, The average orders of Hooley's Δ_r-functions, Mathematika 31:1 (1984), pp. 98-109.
R. R. Hall and G. Tenenbaum, The average orders of Hooley's Δ_r-functions, II, Compositio Math. 60 (1986), pp. 163-186.
C. Hooley, On a new technique and its applications to the theory of numbers, Proc. London Math. Soc. 3 38:1 (1979), pp. 115-151.
Dimitris Koukoulopoulos and Terence Tao, A note on the mean value of the Erdős-Hooley Delta function, arXiv preprint (2023). arXiv:2306.08615 [math.NT]
Helmut Maier and Gérald Tenenbaum, On the set of divisors of an integer, Invent. Math. 76 (1984), pp. 121-128.
Helmut Maier and Gérald Tenenbaum, On the normal concentration of divisors, J. London Math. Soc. 2 31:3 (1985), pp. 393-400.
Helmut Maier and Gérald Tenenbaum, On the normal concentration of divisors. II., Math. Proc. Cambridge Philos. Soc. 147:3 (2009), pp. 513-540.
J.-L. Nicolas, Méthodes probabilistes et combinatoires en théorie des nombres, Séminaire Delange-Pisot-Poitou. Théorie des nombres, Tome 17 (1975-1976) no. 1, Exposé no. 9, p. 1.
J. M. Rodríguez Caballero, Symmetric Dyck Paths and Hooley's Δ-Function, In: Brlek S., Dolce F., Reutenauer C., Vandomme É. (eds) Combinatorics on Words, WORDS 2017, Lecture Notes in Computer Science, vol 10432.
Gérald Tenenbaum, Sur la concentration moyenne des diviseurs, Commentarii Mathematici Helvetici 60:1 (1985), pp. 411-428.
FORMULA
a(mn) <= d(m)a(n) where d(n) is A000005.
The average order is between log log x and (log log x)^(11/4); the lower bound is due to Hall & Tenenbaum (1988) and the upper bound to Koukoulopoulos & Tao. - Charles R Greathouse IV, Jun 26 2023
EXAMPLE
The divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24. For u = 3, {3, 4, 6, 8} are in [3, 3e] = [3, 8.15...] and thus a(24) = 4.
MAPLE
with(numtheory):
a:= n-> (l-> max(seq(nops(select(x-> is(x<=exp(1)*l[i]), l))-i+1,
i=1..nops(l))))(sort([divisors(n)[]])):
seq(a(n), n=1..100); # Alois P. Heinz, Jun 21 2013
MATHEMATICA
a[n_] := Module[{d = Divisors[n], m = 1}, For[i = 1, i < Length[d], i++, t = E*d[[i]]; m = Max[ Sum[ Boole[d[[j]] < t], {j, i, Length[d]}], m]]; m]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 08 2013, after Pari *)
PROG
(PARI) a(n)=my(d=divisors(n), m=1); for(i=1, #d-1, my(t=exp(1)*d[i]); m=max(sum(j=i, #d, d[j]<t), m)); m
(PARI) a(n)=my(d=divisors(n), r, t); for(i=1, #d\2, t=setsearch(d, d[i]*exp(1)\1, 1); t=if(t, t-i, setsearch(d, d[i]*exp(1)\1)+1-i); if(t>r, r=t)); r \\ Charles R Greathouse IV, Mar 01 2018
(Haskell)
a226898 = maximum . map length .
map (\ds@(d:_) -> takeWhile (<= e' d) ds) . init . tails . a027750_row
where e' = floor . (* e) . fromIntegral; e = exp 1
-- Reinhard Zumkeller, Jul 06 2013
(Python)
from sympy import divisors, exp
def a(n):
d = divisors(n)
m = 1
for i in range(len(d) - 1):
t = exp(1)*d[i]
m = max(sum(1 for j in range(i, len(d)) if d[j]<t), m)
return m
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 19 2017
CROSSREFS
Partial sums are A226901. Cf. A226899, A226900, A027750, A022843.
KEYWORD
nonn,nice,core
AUTHOR
STATUS
approved
Decimal expansion of the constant whose continued fraction representation is [e^0; e^1, e^2, e^3, e^4, ...] where e is A001113 and the exponents cycle through all nonnegative integers.
+20
4
1, 3, 5, 0, 5, 4, 3, 6, 0, 4, 3, 2, 2, 1, 1, 2, 4, 1, 8, 0, 4, 7, 0, 9, 8, 3, 2, 4, 6, 5, 9, 7, 4, 8, 3, 6, 8, 6, 6, 1, 4, 6, 7, 3, 3, 2, 0, 5, 8, 3, 6, 4, 0, 4, 6, 6, 5, 6, 0, 2, 9, 1, 6, 6, 2, 8, 0, 9, 4, 7, 1, 9, 0, 4, 4, 1, 2, 4, 5, 8, 4, 5, 3, 8, 1, 5, 9, 0, 7, 8, 9, 4, 6, 5, 2, 5, 1, 9, 2, 4, 2, 6, 6, 0, 9
OFFSET
1,2
LINKS
EXAMPLE
1.35054360432211241804709832465974836866146733205836404665602916628...
MATHEMATICA
N[FromContinuedFraction[Table[E^k, {k, 0, 25}]], 111]
PROG
(PARI) f(n)= { x=0; for (i=1, n, x=1/(exp(1+n-i) + x)); 1+x } { default(realprecision, 2080); y=1.0; n=70; x=f(n); while(x!=y, y=x; n=n+1; x=f(n); ); for (m=1, 2000, d=floor(x); x=(x-d)*10; write("b100609.txt", m, " ", d)); } \\ Harry J. Smith, May 03 2009
CROSSREFS
Cf. A001113.
Cf. A055972 Continued fraction. - Harry J. Smith, May 03 2009
KEYWORD
cons,nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 01 2004
EXTENSIONS
Fixed my PARI program, had -n numbers Harry J. Smith, May 19 2009
STATUS
approved
Left(0)/right(1) turning sequence needed to traverse the Stern-Brocot tree (A007305, A047679) from the root down to e (A001113).
+20
4
1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1
COMMENTS
The sequence has the following regular pattern: 1 0{0} 1 0 1{2} 0 1 0{4} 1 0 1{6} 0 1 0{8} ... where {r} indicates that the preceding term is repeated r times.
Run lengths of this sequence (A003417) are the coefficients of the continued fraction for e.
The positions of zeros and ones are given by A358510 and A358511, respectively. - Paolo Xausa, Nov 20 2022
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd Edition, Addison-Wesley, 1989, p. 115-123.
LINKS
Michael De Vlieger, 2^11 X 2^11 bitmap of a(n), n = 1..2^22, where white represents 0 and black represents 1.
Michael De Vlieger, Binary tree of a(n), n = 1..2^14-1, where dark blue represents 0 and red represents 1.
FORMULA
The sequence begins with
floor(e / 1) = A003417(1) ones, followed by
floor(1 / (e mod 1)) = A003417(2) zeros, followed by
floor((e mod 1) / (1 mod (e mod 1))) = A003417(3) ones, followed by
floor((1 mod (e mod 1)) / ((e mod 1) mod (1 mod (e mod 1)))) = A003417(4) zeros
...
From Paolo Xausa, Nov 20 2022: (Start)
a(A358510(n)) = 0.
a(A358511(n)) = 1.
Limit_{n->oo} (1/n)*Sum_{i=1..n} a(i) = 1/2. (End)
EXAMPLE
In the initial portion of the Stern-Brocot tree shown below, the arrows indicate the traversing route.
1/1
|
.----------------->-----. Right (1)
| |
1/2 2/1
| |
.-----------. .-------->--. Right (1)
| | | |
1/3 2/3 3/2 3/1
| | | |
.-----. .-----. .-----. .-<---. Left (0)
| | | | | | | |
1/4 2/5 3/5 3/4 4/3 5/3 5/2 4/1
...
The first terms of the sequence are therefore 1, 1, 0.
MATHEMATICA
(* Generate up to 2^22 terms of this sequence from the 2^11 X 2^11 bitmap *)
With[{rows = 12}, ImageData[Import["https://oeis.org/A342991/a342991.png"]][[1 ;; rows]] /. {0. -> 1, 1. -> 0} // Flatten] (* Michael De Vlieger, Nov 04 2022 *)
A342991[i_]:=Flatten[Array[{1, PadRight[{}, 4#], 1, 0, PadRight[{}, 2+4#, 1], 0}&, i, 0]]; (* Each iteration adds six runs of values *)
A342991[10] (* Paolo Xausa, Nov 20 2022 *)
PROG
(Python)
from itertools import count, islice
def A342991_gen(): # generator of terms
a = 0
yield from (1, 1)
for n in count(2):
q, r = divmod(n, 3)
yield from (a, )*(1 if r else q<<1)
a = 1-a
A342991_list = list(islice(A342991_gen(), 40)) # Chai Wah Wu, Nov 04 2022
(PARI)
A342991(iter) = concat(vector(iter, i, concat([1, vector((i-1)<<2), 1, 0, vector(2+(i-1)<<2, x, 1), 0]))); \\ Each iteration adds six runs of values
A342991(10) \\ Paolo Xausa, Nov 24 2022
(PARI) a(n) = my(r, s=sqrtint(n-1, &r)); bitand(s + (r<s-1 || r==s), 1); \\ Kevin Ryde, Nov 24 2022
KEYWORD
nonn,easy
AUTHOR
Paolo Xausa, Jul 21 2021
STATUS
approved
Decimal expansion of e (A001113) written in base 2.
+20
1
10, 111, 1, 1000, 10, 1000, 1, 1000, 10, 1000, 100, 101, 1001, 0, 100, 101, 10, 11, 101, 11, 110, 0, 10, 1000, 111, 100, 111, 1, 11, 101, 10, 110, 110, 10, 100, 1001, 111, 111, 101, 111, 10, 100, 111, 0, 1001, 11, 110, 1001, 1001, 1001, 101, 1001, 101, 111, 100
OFFSET
1,1
MATHEMATICA
Table[ FromDigits[ IntegerDigits[ RealDigits[E, 10, 60] [[1]] [[n]], 2]], {n, 1, 55}]
KEYWORD
nonn,base,less
AUTHOR
Cino Hilliard, Sep 23 2003
EXTENSIONS
Edited, corrected and extended by Robert G. Wilson v, Sep 27 2003
STATUS
approved
a(n) is the absolute value of floor(x^n), where x=E/(2-E) = -3.784422... is derived from E=A001113.
+20
1
4, 14, 55, 205, 777, 2937, 11118, 42072, 159220, 602554, 2280320, 8629690, 32658395, 123593159, 467728718, 1770083028, 6698741833, 25350868523, 95938394252, 363071406534, 1374015557281, 5199855228676, 19678448512407
OFFSET
1,1
MATHEMATICA
digits=40 a = Table[Floor[Abs[(E/(2-E))^n]], {i, 1, digits}]
PROG
(Maxima) A088655(n) := block(
abs(floor((%e/(2-%e))^n))
)$
for n : 1 thru 20 do print(A088655(n)) ; /* R. J. Mathar, Feb 23 2012 */
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Nov 21 2003
STATUS
approved
Values of k such that PrimePi(k)^2 < (e*k*PrimePi(k/e))/log(k), where e = 2.71828... (A001113).
+20
1
6, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95
OFFSET
1,1
COMMENTS
From Amiram Eldar, Apr 12 2022: (Start)
Ramanujan proved that all sufficiently large values of k are in this sequence.
According to Berndt (1994), W. Galway found that the largest prime below 10^11 that is not in this sequence is 38358837677.
Hassani (2012) proved that assuming the Riemann hypothesis, all numbers >= 138766146692471228 are in this sequence.
Dudek and Platt (2015) proved that assuming the Riemann hypothesis 38358837682 is the largest number that is not in this sequence, and that unconditionally all numbers > exp(9658) are in this sequence.
Axler (2018) proved that the inequality holds for all numbers between 38358837683 and 10^19 and for all numbers > exp(9032).
Platt and Trudgian (2021) proved that the inequality holds for all numbers between 38358837683 and exp(58) and for all numbers > exp(3915).
Johnston (2021) proved that the inequality holds for all numbers between 38358837683 and exp(103).
Cully-Hugill and Johnston (2021) proved that the inequality holds for all numbers > exp(3604). (End)
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks, Part IV, New York: Springer-Verlag, 1994, pp. 112-113.
S. Ramanujan, Notebooks, 2 vols., Tata Institute of Fundamental Research, Bombay, 1957, 2nd notebook, p. 310.
LINKS
Christian Axler, Estimates for pi(x) for large values of x and Ramanujan's prime counting inequality, Integers, Vol. 18 (2018), Article A61, 14pp.; arXiv preprint, arXiv:1703.02407 [math.NT], 2017.
Michaela Cully-Hugill and Daniel R. Johnston, On the error term in the explicit formula of Riemann-von Mangoldt, arXiv:2111.10001 [math.NT], 2021.
Adrian William Dudek, Explicit Estimates in the Theory of Prime Numbers, Doctoral dissertation, The Australian National University, 2016; arXiv preprint, arXiv:1611.07251 [math.NT], 2016,
Adrian W. Dudek and David J. Platt, On Solving a Curious Inequality of Ramanujan, Experimental Mathematics, Vol. 24, No. 3 (2015), pp. 289-294; arXiv preprint, arXiv:1407.1901 [math.NT], 2014.
Mehdi Hassani, On an inequality of Ramanujan concerning the prime counting function, The Ramanujan Journal, Vol. 28, No. 3 (2012), pp. 435-442; ResearchGate link.
David Platt and Timothy Trudgian, The error term in the prime number theorem, Mathematics of Computation, Vol. 90, No. 328 (2021), pp. 871-881; arXiv preprint, arXiv:1809.03134 [math.NT], 2018-2020.
Eric Weisstein's World of Mathematics, Prime Counting Function.
MATHEMATICA
Select[Range[2, 100], PrimePi[#]^2 < (E*#*PrimePi[#/E])/Log[#] &] (* Amiram Eldar, Apr 12 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Feb 08 2004
EXTENSIONS
Offset corrected by Amiram Eldar, Apr 12 2022
STATUS
approved
Bisection of A001113 (digits of e).
+20
1
7, 8, 8, 8, 8, 5, 0, 5, 3, 3, 0, 8, 4, 1, 5, 6, 2, 9, 7, 7, 4, 0, 3, 9, 9, 9, 7, 9, 6, 6, 6, 7, 2, 0, 6, 3, 3, 3, 4, 5, 4, 7, 3, 2, 7, 5, 5, 6, 4, 7, 2, 4, 6, 9, 9, 2, 0, 0, 9, 2, 8, 7, 1, 5, 6, 2, 0, 3, 7, 9, 0, 3, 2, 5, 6, 5, 5, 3, 7, 8, 3, 3, 8, 2, 9, 3, 9, 7, 3, 3, 8, 9, 8, 7, 3, 9, 2, 1, 1, 0, 1, 7, 8, 4, 8
OFFSET
0,1
LINKS
MATHEMATICA
Take[RealDigits[E, 10, 220][[1]], {2, -1, 2}] (* Harvey P. Dale, Jun 17 2021 *)
CROSSREFS
Cf. A001113.
KEYWORD
nonn,base,easy
AUTHOR
N. J. A. Sloane, Nov 20 2004
EXTENSIONS
More terms from Joshua Zucker and Franklin T. Adams-Watters, May 10 2006
STATUS
approved
The sequence of numbers where the n-th term is (Pi^n - e^n) rounded down to the nearest integer, where Pi is the ratio of a circle's circumference to its diameter (A000796) and e is Euler's constant (A001113).
+20
1
0, 0, 2, 10, 42, 157, 557, 1923, 6507, 21706, 71621, 234329, 761514, 2461263, 7919566, 25389128, 81146110, 258689610, 822922433, 2613081648, 8284791600, 26232816108, 82971091345, 262178903447, 827784397784, 2611774514980, 8235612082447, 25955792878501
OFFSET
0,3
FORMULA
A(n) = floor(Pi^n - e^n)
EXAMPLE
A(0)=0, A(1)=0, A(2)=2 etc...
MATHEMATICA
Table[Floor[Pi^n-E^n], {n, 0, 40}] (* Harvey P. Dale, Jun 02 2015 *)
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Harvey P. Dale, Jun 02 2015
STATUS
approved
Cut decimal expansion of e (A001113) into pieces that are primes, each prime being greater in length than the last.
+20
1
2, 71, 8281828459045235360287471, 352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059
OFFSET
1,1
COMMENTS
Feb 06 2012: Charles R Greathouse IV found the next few terms. He reports that the sequence starts 2, 71, 8281828459045235360287471, 352...3059 (90 digits), 9218...939 (456 digits), 239...6753 (608 digits), 985...8631 (1421 digits), 382...0327 (1469 digits). Since these terms are too large to display here, M. F. Hasler points out that we could add a sequence giving the starting place (in the decimal expansion of e) where the next prime begins.
If we omit the condition that the terms increase in length, the sequence begins 2, 7. The third term is the 649-digit number 18281...0429, found by Charles R Greathouse IV, Feb 06 2012.
CROSSREFS
A subsequence of A198188. - M. F. Hasler, Feb 05 2012
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Feb 05 2012
EXTENSIONS
a(4) from Ignacio Larrosa Cañestro, Feb 05 2012
STATUS
approved
Numerator of floor(e*10^n)/10^n, where e = exp(1) = A001113.
+20
1
2, 27, 271, 1359, 13591, 67957, 2718281, 13591409, 135914091, 679570457, 6795704571, 54365636569, 2718281828459, 2718281828459, 16989261427869, 543656365691809, 6795704571147613, 271828182845904523, 543656365691809047, 27182818284590452353
OFFSET
0,1
COMMENTS
Numerator of the decimal fraction of e = 2.71828... truncated to a given number of decimal places.
EXAMPLE
a(2) = 271 is the numerator of 2.71 = 271/100.
a(3) = 1359 is the numerator of 2.718 = 2718/1000 = 1359/500.
MATHEMATICA
Module[{nn=30, ee}, ee=RealDigits[E, 10, nn][[1]]; Join[{2}, Rest[ Numerator[ Table[ FromDigits[Take[ee, n]]/10^n, {n, nn}]]]]] (* Harvey P. Dale, May 15 2015 *)
PROG
(PARI) a(n, c=exp(1))=numerator(c\.1^n/10^n) \\ M. F. Hasler, Sep 21 2011
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, following a suggestion by Eric Angelini, Sep 21 2011
STATUS
approved

Search completed in 0.208 seconds