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A(n) := sup Z 1 (n € N¥),
u€R d|n
O<log d—u<1
obtaining, for almost all integers n, the inequalities
(logy n) () < A(n) < (log, n)!°&2+o(D)

M) ~ 0.33827 is conjectured to be
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1. Introduction

For positive integer n and real u, we consider
A = 1 A = A .
(n,u) oo (n) := max A(n, u)
d|n
et<dgen !
The A-function is an interesting example of a concentration function of arithmetical

nature. It was introduced by Erdds in [2] more than thirty years ago and Hooley
[6] showed that information on its average order

s(x) == % Z A(n)

nx



2 H. MAIER & G. TENENBAUM

and of a number of its generalizations have applications to a great variety of
arithmetical problems. Established in [4] and [11], the best bounds at the time
of writing are

(1-1) log, = < s(z) < ecVIos2wlogs @ (x — 00)

where c is a constant and, here and in the sequel, log; denotes the k-fold iterated
logarithm. See [5] and [12] for further references and descriptions on this question.
The normal order of A(n) is also of crucial interest from the perspective
of understanding the fine multiplicative structure of a random integer. It was
conjectured by Erdés at the end of the thirties, and referred to in [1], that A(n) > 1
for almost all n. This was settled, positively, by the authors in [7], and the best
known bounds for the normal behaviour of A(n), established in [7] and [8], are

(1-2) (logy n)0+t°M) < A(n) < &(n)logyn (n — o0)

where ¢y := (log2)/|log(1l — 1/log3)| ~ 0.28754 and £(n) is any function tending
with infinity with n.

Our aim here is to improve upon both the upper and the lower bound of (1-2).
The new lower bound, stated in Theorem 1.4 below, is the most difficult; we believe
that it coincides with the actual normal order of the A—function, although a line
of attack towards such an estimate still eludes us.

As in previous work, we use the notation pp to indicate that a relation holds on
a sequence of asymptotic density 1. Furthermore, the notation ppz means that the
relation thus designated holds for all but o(z) integers < z as x — oo.

We denote by {pj(n)};ug) the increasing sequence of distinct prime factors of an
integer n and let {dj(n)};(:nl) represent the increasing sequence of its divisors.

For r > 1, we define

djir

E,(n) := i =
() 1<jglrl(rrlb)fr d;

Given an integer-valued function £ = £(x) tending to infinity arbitrarily slowly, we
put
K = K(n,z) :=max{k : 1 <k <w(n), log, pr(n) <log,z —&(x)}

and

np = [ecjerpitn) ifk <K,
nK if k> K.

It follows from theorems 50 and 51 of [5] (but see also the corollary to lemma 7
of [8]) that, for any given € > 0, we have

(1-3) L+ (e/3) 1 < Br(m) <1+ (e/3)' 7% (€<k<K) ppr
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and the exact pp behaviour of E,.(n) for r > 2 raises an interesting open problem.
Using techniques similar to that of the proof of theorem 3 of [3], it can be shown
that

Ea(ng) >14+e 2% (6 <k <K) ppz

for some ay < log3 — 1. Moreover, it is a simple consequence of theorem 51 of [5]
that, for any € > 0 and all r > 1, we have

(1-4) E.(ny) <14e 79%F (¢<k<K)  ppe
with ) log3
* 0og m—1 m
- = 0% gm=l p 4] om
O o —1 €0 log3 —1 r

The methods and results of the present paper may be used to sharpen these bounds.
We can thus replace o in (1-4) by

1
(1-5) = ————— 01:=12(200+1), 2" <r41<2™

T m—1"’

(Qo - 1)91

We do not pursue such goal here and postpone the corresponding study to a future
work.

In our first result below, we obtain a new pp-lower bound for E,(ny) when r
is large. This implies in particular, for a suitable constant ¢ > 0, an inequality of
the type E,.(ny) = 14 {E1(ns) — 1}¥/" which is non trivial as soon as r > 8. This
information will be later exploited through the fact that A(n,u) stays almost equal
to its maximum on a fairly long interval, with the consequence that high moments
of A(n,u) may be used more efficiently in the process of bounding A(n).

Theorem 1.1. Let r > 1 be given. Then
(1-6) E.(ng) > 1427 ¢+2/m (¢ « k< K)  ppe.
Note that 7(ng) = 28¢, so it follows from (1-6) that

Ep(ng) >1+2737"r(ng)" V" (€<k<K)  ppz.

Corollary 1.2. Let r = r(n) — co. Then we have
E.(n) >1+1/(ogn)°®  pp.
As will be seen in Section 3, Theorem 1.1 may be inserted in our previous upper

bound iterative method in a fairly standard way. We thus obtain the following
estimate.
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Theorem 1.3. We have
(1-7) A(n) < (loggn)°e>+o)  pp,
In the sequel, we put

1

_ 1-1/log27
~1-1/log3

~ 7.76048.
1-1/log3

(1-8) oo : ~ 11.14072, o1 == £(200+1) =

Our final result, proved in Section 4, is a lower bound which we believe optimal.
The main idea is to show that, in previous lower bounds methods, some prime
factors are left over in the involved iterative processes and to develop an extended
procedure in order to actually employ these extra primes to manufacture more close
divisors. Further details are provided in Section 4.1.

Theorem 1.4. Let 7 := (log2)/log 01 =~ 0.33827. Then
(1-9) A(n) > (logyn)? ™M pp.
We conjecture that this result is optimal in the strong sense that

A(n) = (logyn)" ™M pp.

The authors take pleasure in thanking Régis de la Breteche and Aziz Raouj for
their help on a first draft of this article.

2. Proofs of Theorem 1.1 and Corollary 1.2

2-1. Proof of Theorem 1.1
For integers m > 1, ¢ > 1, and real € > 0, define

A (myu) = Z 1 (uweR),
d|m
e"<d<(14¢e)e"

Dy(mse) = /+°° (As(m;U)) du

—00 q

— Z log{(1+¢)di/dq},

djlm (1<j<q)
d1<d2<...<dq<(1+6)d1
Dy (m;e) := Z 1.
djlm (1<j<q)
d1<d2<...<dq<(14¢€)dy
We shall prove the following result, from which the required result is a compar-
atively simple consequence. We use throughout the notation

E 1= e ok,
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Lemma 2.1. Let a > 0 and ¢ > 1 be fixed. Then we have
(2-1) Dy(ng;ex) <el2b (€ <k <K) ppz.

Before embarking on the proof, we check that this implies (1-6). Indeed, let us
assume that » > 1 and that dg < dy < ... < d, are r + 1 consecutive divisors of ny
in some interval Je*, (1 + €;)e"]. Then, we have, trivially,

<A2ak (ro; )

ri1 ) >1 (logdo—%€k<u<logdo).

Therefore, for all non exceptional n, we have %ak < Dyyi(ng; 2e;) < 52“2]“"‘“‘1,

from which it readily follows that e, = =% > 2= (k+7+2)/7 Thjs is all needed.

Proof of Lemma 2.1. The result holds trivially for ¢ = 1 since we have
(2-2) Di(ng;e) = 7(ng)log(1l +¢) < e2°

forall > 1 and € > 0.
We may hence assume henceforth that ¢ > 2 and also that 0 < a < % for, in view
of the lower bound in (1-3), we have Dy(ng;er) = 0 for any fixed a > log3 — 1.
We argue by induction on ¢, and set out to establish that

(2-3) Dj(neser) <128 (1<j<q,2/a<l<k<K) ppz.

This is sufficient since we may ultimately replace £ by %aﬁ , for the choice of ¢ is
arbitrary under the constraint £(x) — oo.

By (2-2), the result holds trivially for ¢ = 1. We now consider an integer g > 2
and assume that (2-3) is satisfied when 1 < j < g. Put h(k) := [ak]. By (1-3), we
have

El(nh(k)) >14er (26/a<k<K) pp,

SO
(2+4) Dy(npmyier) =0 (2§/a <k < K) ppz.

We shall bound D,(ng;er) for h(k) < £ < k by induction on ¢, taking (2-4) as
initial step.

Before embarking on the proof, we make a technical change, due to the fact that
the upper bound induction process is greatly simplified if we have at our disposal
an a priori lower bound for the quantity under study. So, we introduce

D};(m;a) := Dy(m;e) +e9257(m),
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and note that our induction hypothesis becomes

(2-5) D;(ng;sk) gd?”l 1<j<qg—1,2/a<t<k<K) ppz.
Also, we bear in mind that (2-4) implies

(2-6) Dg(nh(k);sk) = 5%2“’“) (28/a <k < K) ppz.

For notational simplicity, we put € = € in the sequel of this proof. The basic
device is the formula

Ac(nggr,u) = Ac(ng,u) + Ac(ng, u — log peya(n)) € << K(n,x)),

from which we readily obtain, for n < z, £ < K(n,z),

(2:7) Dy(nes1;€) = 2Dy (ng;€) + Z By,j(ne; e, pe1(n)),
1<j<q—1
where oo
A ; A su— 1
Bustosey = [ (B0 (st
—o0 J q—1J

The main step in our method consists in averaging (2-7) over numbers with fixed
ng and variable pyi1(n). This process is only effective if the mean values are taken
in a set of integers n < x whose multiplicative structure is sufficiently close to a
statistical one, and we now describe the required properties.

We set L := [2log, x], so that

K(n,z) < L ppz.

Let 8 denote a sufficiently small positive constant and, for £ < ¢ < L, let Ay denote
the set of all integers a satisfying the conditions

n(a)? =1, wia) = £ =&,
(Ag) logy Pt (a) < logyx — &, logya < logy  — 3£,
(1=8)(G+¢) <logypj(a) <(1+B)(1+&) (1 <j<L—9).

Set
A={n<z:neA (<l K(n,ux))}

Then, it follows from [8] (corollary to lemma 2 and lemma 4) that
neA ppz.

Define S¢(z,a) as the number of those n < x such that n, = a. By lemma 5 of [8],
we have

(2:8) Sepi(w, ap) < eATAE-(=B) L
ap

uniformly for £ < ¢ < L, a € Ay, and P*(a) < p < expexp(logy z — ).
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We are now ready for the averaging step mentioned above. For h(k) < ¢ < L,
(lGAg,léj<(]*1,put

Ty (a,x) = Z Byj(aie, pera(n)).
neA, ng=a
K(n,x)>t

Then

Tg,i(a,2) < Z Se+1(z,ap) By, ; (a;g,p)

p>P+(a)
(29) apEAr41
+ . )
< (g [T (Aslaiu) 3 L(Aclasu—logp) 4
aJ -0 J p q—17
p>PT(a)

by (2-8). The p-sum equals

(2-10) > > 1

di,....dg—jla e"/di<p<(14e)e" /dg—; p
di1<...<dg—;<(1+4€)dy p>PYt(a)

In the inner sum, p covers an interval of bounds e, e”, say. By the prime number
theorem, this is
vodt o
— 4+ 0(e” V).
.
We rearrange the main terms and add the remainders, noticing that
w > log P*(a) > (=A%,

We obtain that the double sum (2-10) does not exceed

(2-11) /100 (As(a;u - t)> % n O(D;_j(a; &) exp 6(175)4/2))

og P+ (a) q—1J
Using the crude upper bound D} _(a;¢) < 7(a)?=7 < 244979) | we plainly obtain

D*

v i(a;e) exp ( _ e(l—ﬂ)l/Q) < exp (qﬂ _ e(1—6)£/2) < e_[Dg_j(a; €)

since € > ¢!~ for £ > h(k). Appealing to the lower bound log P*(a) > e(1=#),
we thus derive from (2-9) and (2-11)

(2-12) T, i(a,x) < (HAE-201=5) ng (a; E)DJ;_J- (a;€).



8 H. MAIER & G. TENENBAUM
Put Gg(m) ==yt D;(m;a)D;_j(m;s) (¢ =2, m>1). Since

Dj(ner:€) = 2D}(ne: ) = Dylnesr:€) — 2Dy (mes)
when £ < ¢ < K(n,z), we deduce from (2-7) and (2-12) that

1 2) — 9Dt eV T
3 {Dj(nerrie) —2D{(nise)} @ ippe—aa-spe
a

ncA Gq(ne)
ny=a

We now sum this over a € Ay using the bound
3 e 11 (1 n 1) < o(HA-(1-P)E
aea, (1-B)é<log, p<(1+8)L p

We obtain

{D:;(n”l; ) — QDE(W; £) }+
Z Gq(”ﬁ)

This implies, by a standard argument, that the inequalities

(2:13)  D}(ngy1;¢) < 2Df(ngse) +e G (ny)  (26/a <<k < K)

< e~ (1758)¢,
ncA

hold simultaneously for all but at most o(x) integers n < z.(1) We now divide (2-13)
by 2¢+! and sum for h(k) < £ < s < k, taking into account (2:6) and the induction
hypothesis (2-5)—in the form G,(ns) < ge?4*+1. We obtain, for a suitable choice
of the parameter 3,

Di(ng;e 2\ !
% < e + 2¢e? Z (Tﬁiﬂ) < 2
h(k)<e<s ©

provided z, and therefore &, is large enough. This establishes the induction
hypothesis for 7 = g and therefore completes the proof. a

2-2. Proof of Corollary 1.2
For € > 0, let A.(n) := sup,cr Az(n,u). Then, we have
(2-14) A (ab) < Ac(a)7(b) (a>1,b>1).

This is proved in lemma 61.1 of [5] for € = e—1, but the proof immediately extends
to the general case. Let o > 0. Selecting, € := (logz)~%, a = ng and b = n/nk
and noticing that Q(b) < {1+ o(1)}¢, ppz, we infer from (2-14) and (1-6) that

AL (n) <4 45 ppZ.

Since the growth of £ is arbitrarily slow, this implies the stated result in the form
Ac(n) < r(n), ppa. O

1. We remark that crucial use is made here of the fact that we only need to consider (2-13)
when ¢ > h(k).
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3. Proof of Theorem 1.3

This is a simple reappraisal of the upper bound proof in [8], where we take
advantage of the supplementary information provided by Theorem 1.1.
For integers ¢ > 1, n > 1, define

+o0o
My(n):= [ Alnu)'du, Ry(n) = Z (?)Mj(anj(n).

Let ey €]1,e[, @« > 0, r > 1/a. We have

(31) A(n) <27VaM ()T (n2 1,02 1),
(32)  My(npy1) < 2My(ng) +e7"Ry(ny) (E<k <K, 1<q<k) ppr,
(3-3) Alng) <7+ e IMy(ng)/9 (E<k<K,¢>1) ppa.

The first inequality is stated and proved in theorem 72 of [5], the second stems
from equation (13) of [8]. To prove the third, we first check that, for large k, we
have

(3-4) log (1 +2717H/7) > e7he,

we consider ug such that A(ny) = A(ng,up), and observe that, if A(ng) > r and
dy < ... < d, are the r smallest divisors of ny in Je*0, e*01] then, by Theorem 1.1,
we have, in view of (3-4),

(3-5) logd, > logd; +e % (¢ <k<K)  ppz.

Thus A(ng,u) = A(ng) —r for logd; < u < logd,, that is on an interval of length
> e~ %, This implies

My(ng) = (A(ng) — 7’)qe*"’C E<k<K,q=21) ppz,
from which (3-3) follows.
We are now ready for the main step of our proof. Let ¢, § be fixed with
c>a+log2, 1<d<c+1/log2—1.
We show by induction over k that
(3-6) M,(ny) < 2°%(ge (1<
q

For k = £ + 1, we have M,(ny) = 2 for all
large enough. Hence (3-6) holds.
We assume (3-6) holds for k, € < k < K, and establish it still holds for k + 1.
When ¢ < k, we may appeal to the induction hypothesis (3-6) to bound the
right-hand side of (3-2). We select e; sufficiently close to e and obtain

25 k l1—c
My(nisn) < 25<k+1><q!>0{21-5 (5) X (q) }
g VY
< 25(k+1)(q!)c{21—6 + (26/el)k2(1—c)qqc)}
< 26(k+1)(q!)c
for large &, by the choice of §.

<k)  ppz.
1

q
> 1 provided &, and therefore k, is

)
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When ¢ = k + 1, we can still invoke (3-6) to estimate Rq(ny) which is expressed
in terms of M;(ng) with j < ¢ —1 = k. To bound Mj11(ng), we utilise (3-3):
My (i) < A(ng) Mi(ng) < {r + e My(ng)"/*} My (ny,)
270 e (kl)e/*
(k+ 1) (k+1)c }
<PE (R + 1e{enme 4 o(1)],

< 26(k+1){(k + 1)!}c{

by Stirling’s formula. Inserting this in (3-2), we obtain

26+170 k
Myi1(njs1) < 22D {(k + 1)!}6{2&*0 Fo(l) + k(?> }

for large enough &.
This establishes (3-6). In particular, by (3-1),

Ang) < MK(TLK)UK < K° ppI.
Now, by (2-14) for e = e — 1, we have
A(n) < Ang)2%"") < A(ni)d® ppa.
Since aw may be chosen arbitrarily small and we may take £ tending to oo arbitrarily
slowly, this finishes the proof. a
4. Proof of Theorem 1.4

4-1. Owutline

Let go be as defined in (1-8) and recall that g := %(2@0 +1). We fix of > oo,
0} == (205 + 1) > 01, €0 > 0, put ug := (log, *)° and define

(4-1) ug = 0" odug (k=1).

Let K = K, := (1 — 2¢¢)(logs x)/log . We shall show by induction upon k that
there is a positive constant ¢ such that, for any integer k, 1 < k < K, all integers
n but at most < zk/uf have 2k divisors don, dy,, din, diys -y dk—1.n, d;cfl’n
satisfying:

) Ho<j<k djnd;'n ’ n;
(ii) 0 < [log(dj,/djn)l <1 (0<j <k);

(iii) p | [ocj<r djindj, = uo <logyp < ug.
Forming all possible products of K factors by selecting for each j < K one of

the two divisors dj,, d,, we obtain that all but < xKu,“ = o(x) integers n <
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have 2% divisors lying in a interval of logarithmic length 2K . By Dirichlet’s box
principle, it follows that
A(n) > 2571 /K.

Since €9 may be chosen arbitrarily small and o] may be chosen arbitrarily close to
01, we obtain the desired lower bound.

A heuristic explanation for this construction is as follows. Given v and v with
u < v < (1 —¢)log,x, a normal integer has roughly w := v — u prime divisors p
in J,(u,v) :== {p : p|n, u < logyp < v} from which about 3" irreducible ratios of
divisors d’/d may be formed. From a general device, based on a uniform distribution
hypothesis and made effective in [7] and [5], we expect to find two distinct divisors
d, d’ such that |log(d'/d)| < 1 as soon as (essentially) 3* > e¥. However, the
distribution of w(dd’) among the 3" ratios d’/d such that dd'|[,cg (4., P 18
binomial and has a peak when w(dd’) &~ 2w/3. Therefore, we expect, and actually
show, that about w/3 of the prime factors in J,(u,v) have been left over in the
construction of the pair of close divisors {d, d'}. If the multiplicative structure of
dd' is sufficiently regular (and to actually establish this will turn out to be the most
difficult part of the proof) we can construct a new pair of divisors using these prime
factors and, for suitable z, the primes from g, (v, z). Assuming good behaviour of
this set of prime factors, we now only require

3zfv+w/3 > ez7

which is satisfied for the choice u = ug, v = uy, 2z = us. An iterative procedure is
then implemented on this basis. At stage k, we may use approximately ui — ug_1
prime divisors from the last interval, %(uk_l — uj—2) from the previous one, and
so on. The basic condition on the u; may thus be written

Uj — Uj—1 Uk )
Z 3k—3 - log 3

1<k

A simple computation shows that this is indeed the case for the choice (4-1)
provided gf is sufficiently close to go.
4-2. Notation and preliminary estimates

In the sequel, we define N(u, v) as the subset of the positive integers all of whose
prime factors lie in the interval ] exp exp u, exp exp v] and we note that 1 € N(u, v)
for all u, v. It shall be convenient to use the notation

u,v

D

neA

to denote a sum restricted to integers those n belonging to A N N(u,v) for some
given set A.
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For integer n > 1, we use the notation

nu,v = H pyv Q(n;u?v) = Q(nuﬂ)) = Z v.

p”|In p”|In
u<log, p<v u<log, p<v
We also set
V(m;t; z) := > p(dd)?,  V(m;t) = V(m;t;0),
dd’ |m,d#d’
[log(d'/d)—z|<t

and write

(4-2) Qy) :==ylogy—y+1  (y>0).

We first quote, with a slight change of notation, theorem 51 of [5].
Theorem 4.1 ([5]). Let §:= Q(1/log3) =~ 0.00415. Uniformly for

>3, —j<u<v<logyr, wi=v—u>2 1<{<Vw, 0<t<e,
we have
(4-3) V(Nyw; t) > t3%e vV 1

for all integers n < x but at most < x{e_52/50 + g—ﬁw—ﬂm(log w)‘w}.
The following device will be also be of crucial use.

Lemma 4.2. Uniformly for x > 3, v <log,z, T > 1 we have

(4-4) Z 1< ze 172,

nx
ni,,>exp(Te")

Proof. This is Exercise I11.5.6 of [13], with solution in [15]. O

Lemma 4.2 has the following useful corollary.

Corollary 4.3. Let F denote a non-negative arithmetic function. Assume the real
numbers €, €1, €2, u, v, T satisfy € € [0,1], x > 3, —% Su<v<(1—¢)log,z and
also that there exists a subset E, of NN [1,z] such that

(4-5) |E,| < 12, > F(nu) < e
n€[l,z]\Ey
Then, there exists a subset €& of N(u,v) such that
_ 1 - F(m)
4. w = _ 1 _¢ev w .
(4-6) e Zm<<51+exp{ € }, e Z - < €9

meé meN(u,v)\E

The implicit constants depend only on €.
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Proof. We may plainly assume ¢, > exp{f%e“’} and therefore, in view of (4-4),
that E, contains all integers n < x such that n, , >V = eXp{e(H‘E)”}. ‘We then
set € := {m € N(u,v) : In € E,, ny, = m}. Since (1 +e)v < (1 — £2)log, x, we
have by the sieve

Z F(nyy) > xe™™ Z M,

m
n€[l,z]\Ey meEN(u,v)\&

so the second bound in (4-6) is satisfied. Similarly

|E.| > Z 1> axe™™ Z %

n<e meé
nu,vES m<V
Ny, SV

Hence the required result follows from the Rankin type bound

1 1 1 1 -
Z E S Z mlfaVa < W H (1 + plfa) < exp {w - 56 }7
meé meN(u,v) u<log, p<v
m>V m>V

with a := %e*”. a

We also need a variant of theorem 50 of [5].

Theorem 4.4. Uniformly for

T 2 3, —%éugvélogﬂc, wi=v—u=2 1<E<Vw, 0<t<e, |Z‘<%eu7
we have

(4-7) V(nyv;t; z) < t3wevHEVW

for all integers n < x but at most < zwe= /11,

Moreover, under the above assumptions, there exists a subset & = &(u,v) of
N(u,v) such that

1 2
. —w - —£4/11
(4-8) e Z - < we
meé

and

_ V(m;t;z) —vtET
(4-9) e YT S eV,

meN(u,v)\E

The implicit constants in (4-8) and (4-9) are absolute.
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We omit the details since this may be established exactly as in [5]: the introduc-
tion of the parameter z is innocuous inasmuch we have, for all fixed y €]0, 1],

Z Y@ <« De*(log D)~ le V" (D > expexpu).
d<e*D

The second statement immediately follows from the first by Corollary 4.3.

Theorem 4.1 ensures, for suitable values of w and v and all but at most o(x)
integers n < x, the existence of the first pair of divisors, {don, d{, }- In the remaining
part of this section, we prove a number of estimates in order to show that arithmetic
properties of these divisors are such that the prime factors of n,/do,dj, can be
used to produce the second pair at comparatively low cost. These same estimates
will later be used to tackle ny /Dy, with

(4-10) Dy, := dondpy, + + di—1,0di—1,n-

We start with a familiar device on the distribution of prime factors of n,,,. We
write

(4-11) Glnsu,vie) = max {Qniv— j,0) — (1+e)j},
0<j<w

where w := v — u.

Lemma 4.5. (i) Uniformly for —3 < u < v <logyz, w:=v—u, 0 < & < Vo,
0<& < 19—0 w, we have

—&1vVw < w(ny) —w < Q(nyw) —w < &v/w

for all integers n < x but at most < JL‘{e_’ff/2 + e_fg/?’}.
(ii) For any fixed € €0, 2] and uniformly for —% < v <logyz, T > 1, we have

G(n;0,v,¢) :max{Q(n;v—jw) - (1+5)j} <T

Jsv

for all integers n < x except at most < xe~2(1+¢)~T.
Moreover, for all u, v such that —% < u < v, we have

u,v
’ 1
4-12 —w - -T _—-2
(4-12) e > — < (1+e)7Te
G(mju,v;e)>T

(iii) For any fixed € €]0, 1] and uniformly for —
we have

1 <u<v<logyz, 0T < w,

. o
A2 wne—jo)/j>1—¢

for all integers n < x except at most < xe~2e~TRU1~¢),
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Proof. Property (i) is a straightforward generalization of theorem II1.3.7 from [13].
It can be established by inserting, into the proof given in [13], the bounds

Ql—y) >4y?/2, Ql+y) >y*/3 (0<y<1).

We omit further details.
Property (ii) is similar to lemma 50.1 of [5] and may be proved by the same
technique. The second assertion follows by Corollary 4.3.
Property (iii) is identical with the statement of Lemma 51.2 of [5]. O
We put, for m € N*, ¢ € R,

(4-13) o(m;9) == Y p(dd)*(d'/d)" = [[{1+ 2cos(d1ogp)}
dd’'|m plm
and also introduce the function
(4-14) wy(n) = > 1,
p|n, p<exp(1/]9])

with the convention that wy(n) = w(n).
We now establish a result stating that, in a certain average sense upon n, the

quantity o(n/dond,,; 19)2 has the same upper bound than g(n;)? itself. We define,
with the notations (4-13) and (4-14),

o(m; 9)?

and
Vimt;0):= Y R(m/dd;9)  (meN' teR" JeR).
dd’'|m
dd'#1

[log(d'/d)|<t

Theorem 4.6. Assume

<u<v, w=v—u 0LE&<Vw.

=

There exists a subset € = E(u,v) of N(u,v) such that

1
(4-16) e v E — < we &M
m
meé

and, for all t > 0,

(4-17) ey

meN(u,v)\E

VT(m;t;9
Vi(mit;9) < 13We VU flog(3 4 [0}

The implicit constant in (4-17) depends at most on €.
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Proof. When ¢ = 0, the result readily follows from theorem 50 of [5], and
Corollary 4.3 with F(m) := VT(m;t,0). Note that, in [5], the sum is restricted
to pairs {d,d’} such that (d,d’) = 1, but this is actually irrelevant.

The same method applies when ¥} # 0. The corresponding extension of theorem 50
of [5] may be established by a straightforward reappraisal of the proof given in [5]:
the details are essentially identical, simply noting that all innermost sums may be
estimated by appealing to the estimate

(4-18) Z yQ(mu.z)R(m;ﬂ) < :v{log(3 + |,l9|)}4e(y—l)(z—u),

m<x

valid uniformly for z > 1, 0 < u < z < logy(32), ¥ € R, 0 < y < 1. This
is established in [5] (lemma 51.3) when y = 1 for the subsum corresponding to
squarefree integers. The general case is derived similarly. O

The next result provides the main argument for the construction of the second
pair (and actually all subsequent pairs) of divisors in our proof of Theorem 1.4.
For 1 < h < H, we define

glmih, H,0) = wax |Q(mio — j.0)/j - 2/3,

NVAS

and we put for n > 1, —%Quév,t}O,a>07h21,
v(nu,v;t;avh) = Z L.
dd’ |, v

0<|log(d'/d)| <t
g(dd'shaw,v)>a

Other variants of the V-function have been considered in [9] and [14] with the
purpose of counting close divisors with prescribed conditions on the distribution of
prime factors.

We are now in a position to state and prove our main lemma. Like Theorem 4.6,
it generalises theorem 50 of [5], which essentially corresponds to the case o = 0.
However, and although the same method is still applicable, there are now some
extra complications, due to the nature of the new condition on dd’.

Theorem 4.7. Assume

<u<wv, w=v-—u, ogggi w, 0<a<

16 1<h<w,

(SIS

1

10
and set By := +Q(1+ 3a), where Q is the function defined in (4-2). There exists a
subset E, of of [1,z] such that

(4-19) |E,| < x{we*g/u +e*'81hof2}
and, for allt > 0,

(4-20) V(N t; o, h) < te™U3WesVR—Fih (nel,z] N Ey).
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Proof. We start by noting that we may assume henceforth that £ > &, where & is
any absolute constant because the result is trivial otherwise.
We may also, without loss of generality, restrict the parameter ¢ to the range

to <t<ty, with t:= %evg—we—€ﬁ7 t = Le.

=

For, when t < tg, (4-20) implies V(n,, ;t; o, h) = 0. If ¢ > t1, we drop the condition
on t to obtain, for all zg, z1, with 0 < zg <1 < 21,

V(nu,u;t;%h) < Z Z T(m){Z¥(m;v—j7v)—(2/3+a)j + Z(Y)?(m;v—jw)—(?/i%—a)j}.

h<j<w ming

Therefore, we deduce from Lemma 4.5(i) that, for all n < 2 but at most < ze~ /27
exceptions, we have
V(N t; o, h)
. w w a—2/3)j —(2/3+a)j
(4-21) <3 +26vw/3 Z {Z(() / )ij(n;zo)} + 2 (2/3+ )ij(n; 21)},

h<j<w
where f;(n; z) is for each z the multiplicative function of n defined by
- (1 Q(nsu,v) Q(miv—3,v)
fi(niz) = (3) Z 7(m)z .
m|nqy,

Standard bounds on non-negative multiplicative functions (see, e.g., [13], corol-
lary I11.3.5.1) apply to yield

Z fi(n; 2) <, we?Z=1I/3,

n<e

Inserting this back into (4-21), selecting z; := 1+ 3(—1)""'a, and summing upon j
furnishes that the number of integers n < x that satisfy (4-21) and

V(nyw; t; o, h) > %3“""25\/@/363_[3” = tie V3WeXVw/3—Fih

is « za"2e Pk,
We therefore assume henceforth that

(4-22) o St<t.

Let us set

Viin):= > 1, Vin):= > 1,

d|n dd’'|n
1<d<e’ 1<d<d’ <de'
g(d;h,w,v)>a g(dd;hyw,w)>a
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so that we have, for all n,
(4-23) V(nyv;t; o, h) <2Vi(nyw) + 2Va(ngw).

Write dj = 1, dy = d’, and, for i = 1,2, let V] designate the subsum of V;,
corresponding to the condition

.>2
HILl?i(wQ(dd ;v —J4,v)/j = 5 +a,

and V; the similar quantity corresponding to the condition

<2 -
Hrg}gwﬂ(dd v—7,0)/j <5 -«

We shall only describe the bounds for, say, Vl , since the other case is similar.
We begin by establishing an upper bound for Vf(n) We may assume t > e“
since otherwise V (n,,,) = 0. We then have, for all z €]1, 2],

u,logt
nuv < Z Z Q(dv 3,0)—(2/34a)j < Z 7(2/3+a)J Z Q(d;v—3,v)
h<{j<w 1<d<e?t h<j<w
< (1_|_Z)Q(n,u,logt) Z Z7(2/3+a)
h<j<w
5= (2/3+a)h

Q(n;su,logt)
< (1 + z)PHimiwios =@/t

By Lemma 4.5(i), this yields that, for large enough &,

vii_ (nu,v) < %thg(lJrz)(l + z)7“+5\/ﬁ2*(2/3+a)h

for all n < z with at most <, re=&/3 exceptions. We select z :=e—1 and observe
that e™* < 3%e™". Since Q(1 + 3a/2) < (14 3a/2)log(e — 1) for 0 < a < 5, we
obtain that the inequality

(4-24) Vi (1) < Lte™v3WetVe—hih

holds with the required upper bound for the size of the exceptional set.
We now turn our attention to V3 (n,.,). Any counted pair {d,d’} must verify

e '/d < 1/d <log(d/(d —1)) <log(d'/d) <t,
moreover d > 1, logy P~ (d) > u. Hence

(4-25) d > do(t) :== max (expe“,e”"/t).
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We define
I :z]do(t),max(l,l/tZ)], I ::} max(l,l/tQ),x1/4], I ::}xl/‘l,\/:f],

and for k = 1, 2, 3, denote by V, (n,,,) the contribution to V3 (n,,) arising from
pairs {d,d'} such that d € I;. The interval I; is empty unless t> < exp(—e*). In
this case,

Zv;l(nu,v)gx Z é Z

n< d<1/t2  d<d’'<det

The inner sum is < ¢t + 1/d < t by (4-25) since t < 1. Therefore

u,v 1
> V() <tz Y y
n<x d<1/t?

< tze”"log(1/t) < tzxwe™™ = twxe™3%w(e/3)".

Since log3 — 1 — $Q(1 + 2a) > 1 for 0 < a < {5, we infer that

1 10°
(4-26) Vi (nuw) < ﬁte_”?)“’e_’glh
holds for all but an acceptable number of exceptional n < z.

Next, we apply Lemma 4.5(ii) with ¢ := ¢/(3/w), T := ew, to obtain that, with
< gwe=& /11 exceptional n < x, we have

(4-27) Q(n;u,logy d') < (1+¢)(logy d — u) + 3&v/w

simultaneously for all d’ | n,_,. For those integers n such that (4-27) holds, we may
write, for k = 2 or 3 and any y €]0,1], z > 1,

(4-28) v;k(num) gy—g\/@/s Z 27(2/3+a)jvzk(nu,v§j)
h<j<w

with

, / 1o oy (log d'\ —(1+e) logy

Vi (nuw: §) Z Z yP(niulog, d') Q(dd'sv m( - ) .
d'|n/d
dGIk d<d’'<det

We shall choose later the values of the parameters y and z.



20 H. MAIER & G. TENENBAUM

Let us first consider the case k = 2. We have, for h < j < w,

S32(J Z Vo (nuw, J)
n<w
u,v u,v ) ) ‘ 1\ —(14¢) o
< Z Z yQ(dd )ZQ(dd v—j,v) (10gud ) )logy Z yQ(m ju,log, d )
e
del> d<d’'<det m<ax/dd’

Now dd' < etd? < z'/10z1/2 = z3/5 by (4-22). The inner sum is hence

<)

Thus
Q(dyv—j,v) Uu,v Q(d") ,Q(d" ;v—73,v)

(429) 522 << x Z y Z Y - d | : <loegud/)Aa

dels d<d’'<det

with A := y—1—(14¢) logy. The inner sum may be evaluated by partial summation
using the estimate

u,v
(4-30) Z 2 Qv —iv) o pl—c/ exp(v)(logx)y—ley(z—1)j—yu7
n<x
valid uniformly for z > 2, 0 <y < 1, 1 < z < 29 < 2, with an absolute constant

¢ > 0. This can be shown in much the same way as lemma 50.2 of [5] and we leave
the details to the reader.
When ¢ > 1, and assuming that

(4-31) B:=A+y—1=2y—2—(1+¢)logy <0,

we thus obtain that the innermost sum in (4-29) is

< te—utyG=1)j (1°gd>B
eu

When t < 1, we check, by applying Shiu’s theorem [10] on short sums of non-
negative multiplicative functions, that the same estimate persists: indeed we have
d > 1/t?> whenever d € I, so the length of the interval involved is always as large
as the square root of the size on its elements. Taking our estimates back into (4-29),
we obtain

Qd) Qdiv=jv) ]og d\ B
S. —u+y(z—1)j Yy ( )
52(J) < ate § : d ou
dels
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Using (4-30) and partial summation again, we arrive at
(4-32) 55,(j) < wte~ut2wE—Ditw(By)

assuming now that B +y > 1. We now check that the optimal choice for y and z is
compatible with this last condition and (4-31). This optimal choice is determined
by noting that, if we set

Cly) =3y —2— (1+2¢)logy, D(y,z):=2y(1—2)+ (3 +a)logz,

the quantity
te—utwC(y) Z e~ ID(,2)
h<j<w

is, up to constant factor, an upper bound for Vi, (., ,) on average over integers n
satisfying (4-28). Now C(y) is minimal when y = (1 + 2¢)/3, and, with this choice,
D(y,z) is maximal when z = (1 + 3a)/(1 4 2¢). However, these choices are not
always admissible regarding the conditions upon B and the fact that we need z > 1,
so we select y = (1 +¢)/3 and z = 1 + 3« instead. This yields

B=2(14¢)—2+4(1+¢)log{3/(1+¢)} < 3log? — L <0,
B+y=(1+¢)log3—-1-Q(1+¢) >1log3—1>0.

We easily check that

1 1
C( ;5) <log3— 1+ 2¢log3, D(%, 14+ ga) > 2Q(1 + 2a) — ac.
We have therefore shown that
(4-33) Vi () < fyte™ v 3w T2evVu/Se=fihtevw/30

except for at most < z{we=¢" /11 4 a=2e=A1hY} integers n < z.
We proceed similarly to bound S35(j) := Y, <, Vis(nuv; ). We first obtain

n<zx

xeu(l+s) logy WY yQ(d)ZQ(d;v—j,v)

(4-34) S33(J) < T(x,d; 53y, 2)
23 (log aj)(1+8) logy = d
with
< yQ(d/)zQ(d/?”_j’”) log(2x/dd") v
T(x,d;7; = .
(v,d; 55y, 2) Z 7 o
d<d’'<min(etd,x/d)

Arguing as in [5], pp. 103-104 with the help of (4-30), we show that

. 2x\v—1
T(a,ds iy, 2) < (t/y)e?™ 0D log d)r ! (log 73 )
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Inserting back in (4-34) and appealing to (4-30) again to perform partial integration,
we finally arrive at

S*. (i ¢ 1—c/(4expv) 2y(2—1)j—u(
53(J) < (t/y)x € ol

< (t/y)$e2y(z—1)j—u+w(3y—2—(1+6) logy)

log ) 3y—2—(1+¢)logy

The upper bound above is identical to that of (4-32), so we conclude as previously
that

(4-35) Vs (nuw) < fgte V3TV 3 Al evi/50

holds for integer n < x except at most < :c{we*gQ/u + a2e A1} exceptions.
The required conclusion now follows from (4-23), (4-24), (4-26), (4-33) and (4-35).
O

4-8. Arithmetic properties of the first pair of divisors

Recall the definitions of gg in (1-8), Q(y) in (4-2), wy(n) in (4-14) and uy := ofuo
where gf > go. We also introduce a parameter § > 0 so small that

(L+3d)oo0 < 05/(1+9)

and set v1 1= uy /(14 9).

Proposition 4.8. Let gy denote the constant defined in (1-8), let o €0, 5,
o €0, 1[ and assume that n := o} — oo is sufficiently small. There exists a constant
¢ > 0 such that the following assertion holds for all sufficiently large real numbers x,
with ug = (logy x)°: all integers n < = but at most < x/u§ exceptions possess
two distinct divisors doy, dj, such that

(1) dondpp, g 00 5
(ii) |1og(dp,/don)| < 1;

(iii) the 1'nequal1'tyw(nuo,u1 /dOnd’On) —wy (nua’ul/d(m {m) > %(1—0)(111 +log )
holds simultaneously for all ¥ such that e~ (1=)ur 9 ¢ e Yo,

(iv) there exists a subset £ of N* N [1,z] such that |E¢| < x/u§ and, for all
% € [ug, (1 —€)logy ],

(4-36) 3" R(ntugz /dondly,; 9) < 2{ log(3 + [9]) 157,
n<T

n¢80

where the implicit constant depends at most upon &g.
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Proof. We apply Theorem 4.1 with u := ug, v := vy, w 1= v1 — uy, £ := %77\/172,
t := 1, and check that, for large x, we have

3W > 2V TEVW,

Indeed, since (gop — 1) log3 = 0o, we obtain after a small computation that

wlog3 —v—&/w = {log3 — 1 — 55(1 + n1 log 3) }miuo

with m = 0§/(1 4+ 6) — 0o > 0. This yields that (i) and (ii) hold for all n < =
—1/250 .
except at most < xu, exceptions.
To establish (iii) with the required number of exceptions, we first apply
Lemma 4.5(iii) with u := ug, v :=wuy, € := 0/7 and T := ou;. This yields that the
inequality

(437)  wnugan) = wo(Muguy) > (1= 2o)us +log 9] > (1 — Lo (uy + log d)
holds uniformly for e=(1=9)%1 < 9 < e % for all integers n < z but at most
&, ze”QUo/Now « g fug

exceptions.
Next, we apply Theorem 4.7 with u := ug, v := uy, w 1= wy; = Uy —ug, £ := n/wy,
a:=0/6 >0, h:=oui, so that 1 := $Q(1 + ;0), and note that, since

wy log3 + &y/wy = wy(log3 4+ 1) < ur(1+ 127n),

we have, if, as we may assume, 7 is small enough in terms of o,

e—ulgwlefm_ﬁlh < 6—510U1/2.
It follows that there is a subset E, of [1,z] such that
|E,| < a{wie /M 4o Py « 2 /ug

and
Z v(nuo,ul; 1,1+ %U" h) < :L.e—,ﬁlaul/Q.

n<x

Thus, except perhaps for < z/uy exceptional n, the sum V(n,,.,;1; 1+ %a, h) is
empty. For the non exceptional integers n, we have, whenever e=(1=7)u1 < ¢ < e~%0,
w(dondyy,) — wo(dondpy,) < Qdondy,;log(1/9),u1)

< (24 $0)(u1 + log?)

Taking (4-37) into account, we infer that (iii) certainly holds with at most < x/ug
exceptions.
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Finally, we observe that, in the case z = uy, (iv) is an immediate consequence
of Theorem 4.6 with, say, £ := nws, since the summand in (4-36) does not exceed
VT (g uy; 1;9): we select €g = {n < T Nyyu, ¢ E}, where € is as in the statement
of Theorem 4.6. When u; < z < (1 — &9) log, 2, we first apply the case z = u; and
note that, by the sieve,

Ug,u1 /.
Z R(nuo,ul /dOnd6n7 79) - $€7w1 Z R(m/d(;:zd()maﬁ)
n<z meé

n¢80

because the subsum on the left corresponding to those n such that, say, ny ., > vV
may be neglected. Hence it follows from (4-17) that

Uo,u1 ;7.
(4-38) e~ W1 Z R(m/do;nndoma J) & te~wtHEVwIgWL {log(3 + |19|)}4
m¢ge

Therefore, we have, still by the sieve,

U«07u1 u17z
Z R(ny,z/dondpy,; 9) < we” 74 Z m/dOmeW Z R
S megé P

n%ﬁo

Using (4-18) with y = 1 and a standard sieve argument, we see that inner sum is
< e~ {log(3 + [9])}*. Thus, the required bound follows from (4-38). O

4-4. The second pair of divisors
Recall the definition of gg, 01 in (1-8), and let of > oo, 0F = %(293 +1) > o1.

For large =, we define uy, == ¢%" 'ofuo (k > 1) as in (4-1). For u; < j < up and

non-exceptional integer n < x in the sense of Proposition 4.8, we put
n; = H p.
P|nug,j/(dondg,,)

For simplicity, we define n; := 1 when n is exceptional in the above sense. We
shall show that, for all integers n < x but at most < z/uf exceptions, n,, has two
divisors di,,, dln such that 0 < |10g(d’1n/d1n)\ < 1. This will complete the second
of the K inductive constructions described in section 4.1.

We introduce a parameter 6 > 0 so small that

(146’ < o}
and put

(439) z1 = (1 + 5)glu1 g ’u,g/(l + (5)2
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For integer m > 1, we define

cim)i= |J (log(d'/a) + -3, 41)

dd'|m

and denote by A(m) the Lebesgue measure of this set. The following statement
constitutes a fundamental lemma.
We retain from Theorem 4.1 the notation 8 := Q(1/log 3) ~ 0.00415.

Lemma 4.9. Let § and z; be as above. If n := of — 00 > 0 is sufficiently small,
there exists a constant ¢ = ¢(d,n) > 0 such that, for any j € [z1,us] and any € > 0,
we have

A(nj) > ee

for all n < x but at most < z{e” + uy“} exceptions.
Proof. We may plainly assume that e is sufficiently small. By Lemma 3 of [7], we
have, for all m,

A : 9)%dv > B
m) [ om0 >

so we need an upper bound for

(4-40) I(n;) = /_ 22 ongi 0

32w (n;)

We consider the contributions I5(n;) (1 < s < 4) from several ranges D, for the
integration variable 1), with the aim to show that, except perhaps for an acceptable
number of exceptional integers n, we have

efj
441 Is(n;) < —
(4-41) ) < o

We start with Dy := [ —e™7/(167¢),e77/(16me)], and observe that (4-41) then
follows trivially because the integrand in (4-40) has absolute value at most 1.
For the other ranges, namely

Dy :={¥:e7/(16me) < [ < e "1},
Dy:={d:e™™ < |9 e "0},
Dy={0: e < 9| <2},

we seek a uniform lower bound for the quantity
F(nj; ) = gw(ng)—wy(n;)
as a function of ¥, and write, with the notation (4-15),

o(nj;9)* _ R(nj;09)
300~ Flng;0)
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Let x := (1 ++/2)/log3. Since dondy,, | Muguy, We have
w(ng) — wy(n;) = Qnslog(1/19]),5) (9 € D)
and so, we deduce from lemma 51.2 of [5] that
F(n;;v) > |196j|“1°g3

holds simultaneously for all ¢+ € Dy and all n < x but at most < Q) y < xeb.
We thus obtain, with the same number of exceptions,

Ir(nj) < /D2 Mdﬁ.
By (4-18) with y = 1, it follows that, for a suitable subset Es of [1,z] such that
|Ey| < 2,
we have .
Z I(n;) < x/e*f (19ej(;119+\/5 < e V2ge .

n<
ngZEo

Thus, we have (4-41) for s = 2 and all n < 2 but at most < £°z.
We now turn our attention to Ds. In this range, we have

w(nj) — Wy (nj) = w(nuhj) + w(numul/dondgn) — Wy (nuo,ul /dondé)n)?

so we deduce from Lemma 4.5(i) and property (iii) of Proposition 4.8 that, given
any o1 €0, 75[, we have
w(ng) —wy(n;) > (1 —o){j —uwi + %(ul +logd)}

uniformly for e~(1=o1)ut < |9 < e7¥ and n € [1,z] \ E3, with |E3| < x/u§.
However, by Lemma 4.5(i), we have

Qny; (1 —or)ur,ur) < Qn; (1 —o1)ur,ur) < 201w
for all but at most < x/ug integers n < x. Observing that

J—ur = {(1+0)o1 — 1}us > duy (71 < j < ug),
we infer that, for e="1 < || < e~ (1771)% e have

Wy 5) > (1= 0){j — ur + §(u1 +log?) — So1u1}
1—01)(1 = Fo1){j —u1 + 3(u1 +log )}

w(ng) —wy(ng) =
>
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Thus, for any o €]207, 2—10[, all n € [1, 2] \ E5 and uniformly for all ¥ € D3, we have
(442) w(ng) —wo(ng) > (1— 0)j — ur + L(ur +log )},

Consequently,
F(nj,9) > 3(1=0)(=2u1/3) || (1-o)(log 3)/3

provided n ¢ E3. At the cost of modifying the value of the exponent ¢ in our
bound for the size of the exceptional set F3, we therefore deduce from the above
and property (iv) of Proposition 4.8 that

. cuo [© dv
D Ialny) < we 301G 201 /3) g(1—)(10g 3)/3

—uq
nL €

< zexp {auo —(1=0)(log3)(j — 2u1) —ug(l — (1 —0) logS)}

—wexp{ — (1 0)(log3)j + (1 - 0)(ei log3 — Luo |

(4-43)

with o} := %(29(”; + 1). Now observe that, since gfj > g9 and (log3 — 1)y = log 3,
we have
{(1—0)(log3) —1}j =2 (1 +6){(1 — o)(log3) — L}e105u0
> (1+6){(log3 —1)go — o log 3}o1uo
=(1+0)(1—o0)(log3)o1ug.

(4-44)

Therefore, the upper bound in (4-43) is

< pe—i—(-ung(1l-a)(ei~(148)er)un o o=i—uo/2

provided n = of — oo is sufficiently small. We deduce that (4-41) holds for s = 3
and all n < z but an acceptable number of exceptions.

It remains to deal with Dy. Applying (4-42) with ¢ = e7%0, we see that, with an
acceptable number of exceptional n, we have

F(nj,9) > 3(1=0)(i—2u1/3—u0/3)

Appealing to property (iv) of Proposition 4.8 again, we obtain that, for a suitably
bounded exceptional set F,, we have

D Lilny) < a3= (G2 B0 () < < ug)

nLx
'n,QE4

for all oy €]20, 2—10[ Using (4-44) for some o3 > o9 in place of o, we deduce as
previously that the above bound is < ze~(1+¢1)J for some fixed ¢; = ¢;(8,1) > 0.
This yields (4-41) for s = 4 and finishes the proof of our lemma. O
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Having at hand the necessary arithmetic information on ny, 4, /dondy, stated in
Proposition 4.8, it is now a simple matter to complete the proof of the existence of
the pair {d1n,d}, }. The details being very similar to those of [7] (theorem 1) or [5]
(theorem 51), we only provide brief indications.

Let z; be defined as in (4-39) and, for z; < j < vy :=ug/(1 + 0), let us consider
the number N; of those integers n < x such that

min |log(d’/d)| > 1.
dd'|n;
d'#d
This is clearly a non-increasing function of j. Using Lemma 4.9 and a sieve
argument as in [7] or [5], we obtain that, for » < logu; and on the assumption
that N, > z{e? + uy°}, we have
Njyr — Nj > eNj/(logu1)? (21 <j <)

A simple iteration then shows that, in any event,
N, < x{sﬂ +ug® +exp (— CQS’U/%/S/(IOg u1)3)}

where ¢ is an absolute positive constant. Selecting £ = 1/,/uy yields

Ny, < xul_ﬁm,

as required.

4-5. The induction step

In what follows, we extend the definitions of the arithmetic functions w and wy
to positive rational numbers by setting

w(a/b) :=w(a/(a,b)) (a,b € N¥).
We let § > 0 be sufficiently small and put
Vg 1= uk/(1+5), Wg = Uk — Uk—1 (k > ].)

In this section, we assume that ds,, d}, have been constructed for s < k and
we show how to construct the next pair of divisors {dg,, d},}. Our induction
hypothesis is that all integers n < z but at most < ka/u§ have 2k divisors
don, dops dins dipy - ooy di—1n, dj,_,, satisfying the following conditions where
o €]0, 5] is chosen sufficiently small:

(i) Dgn:= H0<s<k dsnd.,,, |nuo,vk with

(ii) 0 < |log(d,,/dsn)| <1 (0<s<k);

(iii) for 0 < m < k, the inequality

(1= 0)(ums1 +log?)
(4-45) & (Nt w1/ Din) = @0 (Mg i1 /Din) > 3kjm

holds simultaneously for all ¥ in the interval e~ (1=)umi1 99 e Um,
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(iv) there exists a subset £y of N* N [1,z] such that |€y| < z/uf§ and, for
all z € [ug, (1 —€)log, ],

(4-46) Z R(nug,2/Din; ) < x{log(3 + [0])}Pe7"*-1,
n<x

n¢éo
where the implicit constant is absolute.

We have to show that the above properties are still satisfied at rank k. We
establish the existence of {djn, dj, ,} exactly as in section 4.4, with now k + 2
integration domains in the analogue of Lemma 4.9, and appealing to the induction
hypothesis instead of Proposition 4.8.

The main difficulty consists in establishing property (iii). To ease exposition, we
restrict to the case k = 2, m = 0, which is fully representative of the general case.

We first note that it is sufficient to consider integers n satisfying

! ! /
Nug,up = dodotQtOSO, Nuyug = t1t181

with the conditions
(a) 0 < |log(dy/do)| <1, di = toty, dy = tpty, 0<|log(dy/di)| <1,

) dodjtothso € N(ug,u1), titis1 € N(ug,u2), p(nugus)® =1,
) |Q(dod)tot)so) — wi| < w3,

d) min  Q(dodjtotyso;ur — jyur)/j =1 — o,

otuy <j<w

e) |log(ty/to)| < (logug)e™ < zeU,

() 1Qdody;ur — jour)/j— 2| <ot (otur < j < wn).

Indeed, the last condition in (b) follows from the fact that all integers n < =z
but at most < wexp{—e“} are such that p> | n = log,p < wup; condition (c)
follows from Lemma 4.5(i); condition (d) is a consequence of Lemma 4.5(iii) with
e := o* T := o*uy; condition (e) follows from Lemma 4.2, since this statement
guarantees that the exceptional n are at most < x/,/ug; and condition (f) follows
from Theorem 4.7 with v = ug, v =u1, a :=0, t =1, £ := nywi, h = oty we
check as in the proof of Proposition 4.8 that, if 5 is sufficiently small in terms of o,
then the number of contravening integers is < e~ #1741/2,

We set out to show that the inequalities

(448) Q(dodétoté;ul —j, ’LLl) < (% + %O )] (0u1 g] < wl)

hold for all integers n < z except at most < z/uf. Indeed, combined with
condition (d), this immediately yields (iii) of the induction hypothesis.
The number of exceptional integers is

(
(4-47) (
(
(

1
4-49 B Y T eeT o,
( ) < ze Z dod()tot{)Sotlt/lSl

where the sum runs over all eight-tuples satisfying (4-47) and contravening (4-48)
for at least one j.
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Condition (e) of (4-47) enables us to apply Theorem 4.4 with

uw=wuy, v=uy, &:=0Vw, z:=log(th/to).

As a consequence, we obtain that, for each fixed dy, dj), to, t{, so the sum over the
three other variables is

(4-50) < gwzemuztwa(lte’)
except for a set of integers n of cardinality < mwle*"swl/ 1
bound.

Next, we need an estimate for the contribution Sy to the sum in (4-49) of the five

remaining variables. To this end, we deduce from the last condition in (4-47) that
if (4-48) is not fulfilled then there is a m € [ouy, w;] such that

, which is an acceptable

(4-51) Q(toth; ur —m,uy) > (3 + Fo)m.

We split each of the variables tg, t[, so into two factors, respectively belonging
to N(ug, u; —m) and N(u; — m,uq), and write accordingly

to=ab, t,=db', so=fg.

We let So(m; A, B, D, E,F,G) denote the subsum of Sy corresponding to condi-
tions (4-51) and

Qaa’) = A Q') =
Qf) =F, Qg) = G,
O(do) = D, Q(d)) = E.

The contribution of a, a’, f, is

2A(w1 —m —+ 1)A+F
< ,
AlF!

that of b, ¥/, g, is
28 (m 4 1)B+¢
BIG!
By conditions (f) and (a), we must have logy dy > u;(1 — o*) — 1. So, for each
given dy, we have

<

1 w; + 1F e ay (w + 1DE
> (Elllo ; <o) 1E71 )
do/e<dh<do ° -1og 4o ’
Q(d{]):E

and similarly
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We thus obtain
2A+B(w1 —m4+ 1)A+F(m + 1)B+Gw1D+E
eur(1-eY) A|BIDIEIFIG! '

SO(m;AaBaDaEvF’G) <

We sum this quantity over the range

() ouy <m < wp,

(B) |A+B+D+E+F+G—w|<w,

(v) B> (% + ﬁa)m

(6) D+E>2(1— o ws.
Indeed, condition () corresponds to (c), condition () to (4-51), and condition (9)
to (f) with j := [wy] + 1.

We introduce two parameters 9, ¢, with ¢ > 1, ¢ > 1, and take () and (9) into
account by inserting a factor
ﬁB—(%+ﬁa)me+E—%(1—%04)’(1)1

and extending the sum to all admissible values of the parameters A, B, D, E, F,G.
This yields

e—ui(l=o") 20 + 3wy + (29 — 2)mIV
) 3 {( ) ( ym}pt

So < w%(lf%a‘l)wl ﬁ(%+ﬁo)mN!

iy
|N—w1\<w1/3 oul <mLwy

The ratio of two consecutive terms in the m-sum is
<o (14 20 -2 )N
(2¢ + 3)wr
This is exceeded by a constant < 1 provided the parameters 9 and ¢ are chosen in
such a way that
290 — 2

——= > 0.
2Y+3

(4-52) ri=2(1+ o) logd —

Under this new hypothesis, we obtain

o (1=t +ro(1—0)}us {(2¢ + 3)w IV
D DR

Sy K

2/3

IN —w:|<wy

67{1704{»7"0'(170')}71,1{(2,1/} 4 3)e}w1+wf/3

w%(l—%o—‘l)wl
We select ¢ := 3, 9 = 1+ %0, and check that (4-52) is satisfied: indeed,
r= %Q(l + 20) > 55-02. This yields, for small enough, positive o,

<

(4-53) Sy < eWrTu 3(4/3)wy —0®u1 /81

Taking (4-50) into account, we obtain that the upper bound (4-49) is
(4-54) < 23@/Bwitws g —ur—uz—0%u1 /82

We have

uyp = 0guo, Uz = 10y, w1 = (g5 — L)ug, w2 = g5(0] — 1)uo.
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Now we observe that

3(log3)(00 — 1) + (log 3)0o(01 — 1) — 00 — 0100

= 3(log3)(00 — 1) + 3 (log 3)a0(00 — 1) — 300(00 + 2)
= 2(log3)(00 — 1)(00 +2) — 200(00 + 2) = 0.

Therefore, the upper bound (4-54) is certainly < 1/ug provided of — 0o is chosen
sufficiently small in terms of o.

This achieves the proof of property (iii) of the induction hypothesis.

Finally, property (iv) follows from (4-17), with now ¢ := k, as explained in the
corresponding part of the proof of Proposition 4.8.

This concludes the proof of the induction step and hence of Theorem 1.4.
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