[go: up one dir, main page]

login
Search: a000219 -id:a000219
     Sort: relevance | references | number | modified | created      Format: long | short | data
Convolution square of A000219.
+20
17
1, 2, 7, 18, 47, 110, 258, 568, 1237, 2600, 5380, 10870, 21652, 42350, 81778, 155676, 292964, 544846, 1003078, 1828128, 3301952, 5911740, 10499385, 18502582, 32371011, 56240816, 97073055, 166497412, 283870383, 481212656, 811287037, 1360575284, 2270274785, 3769835178, 6230705170, 10251665550, 16794445441
OFFSET
0,2
COMMENTS
Equals [1,2,3,...] * [1,0,4,0,10,0,20,...] * [1,0,0,6,0,0,21,...] * [1,0,0,0,8,0,0,0,36,...] * ... - Gary W. Adamson, Jul 06 2009
Number of pairs of planar partitions of u and v where u + v = n. - Joerg Arndt, Apr 22 2014
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vaclav Kotesovec)
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 19.
Paul Martin, Eric C. Rowell, and Fiona Torzewska, Classification of charge-conserving loop braid representations, arXiv:2301.13831 [math.QA], 2023.
FORMULA
G.f.: 1 / prod(k>=1, (1-x^k)^k )^2. - Joerg Arndt, Apr 22 2014
a(n) ~ Zeta(3)^(2/9) * exp(1/6 + 3*n^(2/3)*(Zeta(3)/2)^(1/3)) / (A^2 * 2^(1/18) * sqrt(3*Pi) * n^(13/18)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Feb 27 2015
G.f.: exp(2*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 29 2018
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, 2*add(
a(n-j)*numtheory[sigma][2](j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Mar 12 2015
MATHEMATICA
nn = 36; CoefficientList[Series[Product[1/(1 - x^i)^(2 i), {i, 1, nn}] , {x, 0, nn}], x] (* Geoffrey Critzer, Nov 29 2014 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-x^k)^k)^2) \\ Joerg Arndt, Apr 22 2014
CROSSREFS
Cf. A000219.
Column k=2 of A255961.
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jun 20 2009
EXTENSIONS
Added more terms, Joerg Arndt, Apr 22 2014
STATUS
approved
Partial sums of A000219.
+20
15
1, 2, 5, 11, 24, 48, 96, 182, 342, 624, 1124, 1983, 3462, 5947, 10114, 16993, 28290, 46624, 76225, 123555, 198833, 317627, 504102, 794885, 1246079, 1942112, 3010857, 4643515, 7126749, 10886361, 16555324, 25067633, 37801062, 56776035, 84951990, 126643036, 188127997, 278507781, 410949776, 604437277, 886284200, 1295668181
OFFSET
0,2
COMMENTS
Convergent of columns of A091355.
LINKS
Joerg Arndt and Vaclav Kotesovec, Table of n, a(n) for n = 0..5000 (first 500 terms from Joerg Arndt)
N. J. A. Sloane, Transforms
FORMULA
Euler transform of 2, 2, 3, 4, 5, 6, 7, 8, 9, ...
G.f.: 1/( (1-x) * prod(n>=1, (1-x^n)^n ) ). [Joerg Arndt, Mar 15 2014]
From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) = Sum_{k=0..n} A000219(k).
a(n) ~ (n/(2*Zeta(3)))^(1/3) * A000219(n).
a(n) ~ exp(1/12 + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * 2^(23/36) * sqrt(3*Pi) * Zeta(3)^(5/36) * n^(13/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
(End)
G.f.: exp(Sum_{k>=1} (sigma_2(k) + 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018
MATHEMATICA
CoefficientList[Series[1/(1-x)*Product[1/(1-x^k)^k, {k, 1, 50}], {x, 0, 50}], x] (* Vaclav Kotesovec, Aug 16 2015 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec( 1/((1-x)*prod(n=1, N, (1-x^n)^n )) ) \\ Joerg Arndt, Mar 15 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jan 02 2004
STATUS
approved
Number of symmetrical planar partitions of n: planar partitions (A000219) that when regarded as 3-D objects have a threefold axis of symmetry that is the intersection of 3 mirror planes, i.e., C3v symmetry.
+20
13
1, 0, 0, 1, 0, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 3, 2, 0, 4, 4, 0, 4, 5, 0, 5, 7, 1, 6, 9, 1, 6, 11, 1, 8, 15, 2, 10, 20, 3, 10, 25, 4, 12, 33, 7, 14, 40, 9, 15, 48, 12, 18, 60, 17, 20, 74, 23, 22, 89, 30, 26, 108, 40, 30, 130, 51, 33, 157, 66, 37, 187, 85, 42, 222, 108, 47, 262, 136, 54
OFFSET
1,7
LINKS
EXAMPLE
The plane partition {{2,1},{1}} has C3v symmetry.
KEYWORD
nice,nonn
STATUS
approved
Number of symmetrical planar partitions of n: planar partitions (A000219) that when regarded as 3-D objects have only a threefold axis of symmetry, i.e., C3 symmetry.
+20
13
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 2, 2, 0, 3, 3, 0, 5, 6, 0, 7, 9, 0, 11, 16, 1, 14, 23, 2, 20, 36, 4, 27, 52, 7, 37, 78, 13, 48, 111, 21, 65, 163, 36, 83, 227, 56, 109, 322, 89, 139, 444, 135, 179, 618, 207, 226, 841, 305, 288, 1151, 453, 361
OFFSET
1,19
LINKS
EXAMPLE
The plane partitions {{3, 2, 2}, {3, 1}, {1, 1}} and {{3, 2, 2}, {3, 2}, {1, 1}} have C3 symmetry.
KEYWORD
nice,nonn
STATUS
approved
First differences of A000219.
+20
11
0, 2, 3, 7, 11, 24, 38, 74, 122, 218, 359, 620, 1006, 1682, 2712, 4418, 7037, 11267, 17729, 27948, 43516, 67681, 104308, 160411, 244839, 372712, 563913, 850576, 1276378, 1909351, 2843346, 4221120, 6241544, 9200982, 13515091, 19793915, 28894823, 42062211, 61045506, 88359422, 127537058, 183617286, 263666228, 377696338, 539715276, 769456793
OFFSET
0,2
REFERENCES
G. Almkvist, The differences of the number of plane partitions, Manuscript, circa 1991.
FORMULA
a(n) ~ 2^(1/36) * Zeta(3)^(19/36) * exp(1/12 + 3*Zeta(3)^(1/3)*n^(2/3)/2^(2/3)) / (A * sqrt(3*Pi) * n^(37/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Oct 05 2015
MATHEMATICA
nmax = 60; Rest[CoefficientList[Series[Product[1/(1 - x^k)^k, {k, 2, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 05 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 10 2011
STATUS
approved
Number of asymmetrical planar partitions of n: planar partitions (A000219) that when regarded as 3-D objects have no symmetry.
(Formerly M1392 N0542)
+20
10
0, 0, 0, 1, 2, 5, 11, 21, 39, 73, 129, 226, 388, 659, 1100, 1821, 2976, 4828, 7754, 12370, 19574, 30789, 48097, 74725, 115410, 177366, 271159, 412665, 625098, 942932, 1416362, 2119282, 3158840, 4691431, 6942882, 10240503, 15054705
OFFSET
1,5
REFERENCES
P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..150
P. A. MacMahon, Combinatory analysis.
MATHEMATICA
nmax = 150;
a219[0] = 1;
a219[n_] := a219[n] = Sum[a219[n - j] DivisorSigma[2, j], {j, n}]/n;
s = Product[1/(1 - x^(2 i - 1))/(1 - x^(2 i))^Floor[i/2], {i, 1, Ceiling[( nmax + 1)/2]}] + O[x]^( nmax + 1);
A005987 = CoefficientList[s, x];
a048140[n_] := (a219[n] + A005987[[n + 1]])/2;
A048141 = Cases[Import["https://oeis.org/A048141/b048141.txt", "Table"], {_, _}][[All, 2]];
A048142 = Cases[Import["https://oeis.org/A048142/b048142.txt", "Table"], {_, _}][[All, 2]];
a[1] = 0;
a[n_] := (A048141[[n]] - 3 a048140[n] + 2 a219[n] - A048142[[n]])/3;
a /@ Range[1, nmax] (* Jean-François Alcover, Dec 28 2019 *)
CROSSREFS
Equals (A048141 - 3*A048140 + 2*A000219 - A048142)/3.
KEYWORD
nonn,nice
EXTENSIONS
More terms from Wouter Meeussen
STATUS
approved
Binomial transform of the number of planar partitions (A000219).
+20
10
1, 2, 6, 19, 60, 185, 559, 1662, 4875, 14134, 40564, 115370, 325465, 911355, 2534595, 7004827, 19246626, 52596377, 143006632, 386984573, 1042537831, 2796803110, 7473161196, 19893461042, 52767059608, 139488323734, 367540167625, 965445514862, 2528516552660
OFFSET
0,2
COMMENTS
Let 0 < p < 1, r > 0, v > 0, f(n) = v*exp(r*n^p)/n^b, then
Sum_{k=0..n} binomial(n,k) * f(k) ~ f(n/2) * 2^n * exp(g(n)), where
g(n) = p^2 * r^2 * n^p / (2^(1+2*p)*n^(1-p) + p*r*(1-p)*2^(1+p)).
Special cases:
p < 1/2, g(n) = 0
p = 1/2, g(n) = r^2/16
p = 2/3, g(n) = r^2 * n^(1/3) / (9 * 2^(1/3)) - r^3/81
p = 3/4, g(n) = 9*r^2*sqrt(n)/(64*sqrt(2)) - 27*r^3*n^(1/4)/(2048*2^(1/4)) + 81*r^4/65536
p = 3/5, g(n) = 9*r^2*n^(1/5)/(100*2^(1/5))
p = 4/5, g(n) = 2^(7/5)*r^2*n^(3/5)/25 - 4*2^(3/5)*r^3*n^(2/5)/625 + 8*2^(4/5)*r^4*n^(1/5)/15625 - 32*r^5/390625
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * A000219(k).
a(n) ~ exp(1/12 + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(4/3) + Zeta(3)^(2/3) * n^(1/3) / 2^(5/3) - Zeta(3)/12) * 2^(n + 7/18) * Zeta(3)^(7/36) / (A * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.
G.f.: (1/(1 - x))*exp(Sum_{k>=1} sigma_2(k)*x^k/(k*(1 - x)^k)). - Ilya Gutkovskiy, Aug 20 2018
MATHEMATICA
nmax = 40; s = CoefficientList[Series[Product[1/(1-x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]; Table[Sum[Binomial[n, k] * s[[k+1]], {k, 0, n}], {n, 0, nmax}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 01 2017
STATUS
approved
Number of symmetrical planar partitions of n (planar partitions (A000219) that when regarded as 3-D objects have just one symmetry plane).
(Formerly M0322 N0119)
+20
9
0, 1, 2, 2, 4, 6, 6, 11, 16, 20, 28, 41, 51, 70, 93, 122, 158, 211, 266, 350, 450, 577, 730, 948, 1186, 1510, 1901, 2408, 2999, 3790, 4703, 5898, 7310, 9111, 11231, 13979, 17168, 21229, 26036, 32095, 39188, 48155, 58657, 71798, 87262, 106472, 129014
OFFSET
1,3
REFERENCES
P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..150
P. A. MacMahon, Combinatory analysis.
MATHEMATICA
nmax = 150;
a219[0] = 1;
a219[n_] := a219[n] = Sum[a219[n - j] DivisorSigma[2, j], {j, n}]/n;
s = Product[1/(1 - x^(2 i - 1))/(1 - x^(2 i))^Floor[i/2], {i, 1, Ceiling[( nmax + 1)/2]}] + O[x]^( nmax + 1);
A005987 = CoefficientList[s, x];
a048140[n_] := (a219[n] + A005987[[n + 1]])/2;
A048141 = Cases[Import["https://oeis.org/A048141/b048141.txt", "Table"], {_, _}][[All, 2]];
a[1] = 0;
a[n_] := -A048141[[n]] + 2 a048140[n] - a219[n];
a /@ Range[1, nmax] (* Jean-François Alcover, Dec 28 2019 *)
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
More terms from Wouter Meeussen
STATUS
approved
Inverse binomial transform of the number of planar partitions (A000219).
+20
5
1, 0, 2, -1, 4, -7, 19, -48, 123, -304, 728, -1694, 3865, -8735, 19739, -44875, 102818, -236939, 546988, -1260023, 2888607, -6584008, 14927816, -33714166, 75976024, -171095098, 385405617, -868708176, 1959010348, -4417777937, 9957188242, -22420045445
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A000219(k).
G.f.: (1/(1 + x))*exp(Sum_{k>=1} sigma_2(k)*x^k/(k*(1 + x)^k)). - Ilya Gutkovskiy, Aug 20 2018
MATHEMATICA
nmax = 40; s = CoefficientList[Series[Product[1/(1-x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]; Table[Sum[(-1)^(n-k) * Binomial[n, k] * s[[k+1]], {k, 0, n}], {n, 0, nmax}]
CROSSREFS
KEYWORD
sign
AUTHOR
Vaclav Kotesovec, Nov 01 2017
STATUS
approved
Second Moebius transform of A000219. Number of plane partitions of n whose multiset of rows is aperiodic and whose multiset of columns is also aperiodic.
+20
4
1, 1, 1, 4, 8, 22, 34, 84, 137, 271, 450, 857, 1373, 2483, 3993, 6823, 10990, 18332, 28966, 47328, 74286, 118614, 184755, 290781, 448010, 695986, 1063773, 1632100, 2474970, 3759610, 5654233, 8512307, 12710995, 18973247, 28139285, 41690830, 61423271, 90379782
OFFSET
0,4
COMMENTS
A multiset is aperiodic if its multiplicities are relatively prime.
Also the number of plane partitions of n whose multiset of rows is aperiodic and whose parts are relatively prime.
LINKS
FORMULA
The Moebius transform T of a sequence q is T(q)(n) = Sum_{d|n} mu(n/d) * q(d) where mu = A008683. The first Moebius transform of A000219 is A300275 and the third is A323585.
EXAMPLE
The a(4) = 8 plane partitions with aperiodic multisets of rows and columns:
4 31 211
.
3 21 111
1 1 1
.
2 11
1 1
1 1
The a(4) = 8 plane partitions with aperiodic multiset of rows and relatively prime parts:
31 211 1111
.
3 21 111
1 1 1
.
2 11
1 1
1 1
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
ptnplane[n_]:=Union[Map[Reverse@*primeMS, Join@@Permutations/@facs[n], {2}]];
Table[Sum[Length[Select[ptnplane[Times@@Prime/@y], And[GCD@@Length/@Split[#]==1, And@@GreaterEqual@@@#, And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]], {y, Select[IntegerPartitions[n], GCD@@#==1&]}], {n, 10}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 19 2019
STATUS
approved

Search completed in 0.175 seconds