[go: up one dir, main page]

login
A294503
Inverse binomial transform of A026007.
5
1, 0, 1, 1, -3, 10, -23, 48, -92, 171, -321, 626, -1265, 2576, -5099, 9478, -15925, 22617, -21816, -8506, 121659, -436121, 1204710, -2962759, 6860591, -15427559, 34323613, -76269455, 169591278, -376162414, 827819644, -1798045927, 3839392935, -8041078328
OFFSET
0,5
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A026007(k).
G.f.: (1/(1 + x))*Product_{k>=1} (1 + x^k/(1 + x)^k)^k. - Ilya Gutkovskiy, Aug 20 2018
MATHEMATICA
nmax = 40; s = CoefficientList[Series[Product[(1+x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]; Table[Sum[(-1)^(n-k) * Binomial[n, k] * s[[k+1]], {k, 0, n}], {n, 0, nmax}]
CROSSREFS
KEYWORD
sign
AUTHOR
Vaclav Kotesovec, Nov 01 2017
STATUS
approved