[go: up one dir, main page]

login
Revisions by Jeremy Tan (See also Jeremy Tan's wiki page)

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Square array read by antidiagonals: T(n,k) is the number of derangements of a multiset comprising n repeats of a k-element set.
(history; published version)
#13 by Jeremy Tan at Wed May 01 22:00:04 EDT 2024
STATUS

editing

proposed

#12 by Jeremy Tan at Wed May 01 22:00:02 EDT 2024
LINKS

Jeremy Tan, <a href="/A372307/b372307_1.txt">Table of n, a(n) for Antidiagonals n = 0..56032, flattened</a>

B. H. Margolius, <a href="httphttps://www.jstor.org/stable/3219303">The Dinner-Diner Matching Problem</a>, Mathematics Magazine, 76 (2003), pp. 107-118.

STATUS

proposed

editing

#11 by Jeremy Tan at Wed May 01 21:49:52 EDT 2024
STATUS

editing

proposed

#10 by Jeremy Tan at Wed May 01 21:49:06 EDT 2024
COMMENTS

T(n,k) is the maximal number of totally mixed Nash equilibria in games of k players, each with n+1 pure options.

LINKS

Raimundas Vidunas, <a href="https://arxiv.org/abs/1401.5400">MacMahon's master theorem and totally mixed Nash equilibria</a>, arXiv:1401.5400 [math.CO], 2014.

Raimundas Vidunas, <a href="https://doi.org/10.1007/s00026-017-0344-2">Counting derangements and Nash equilibria</a>, Ann. Comb. 21, No. 1, 131-152 (2017).

#9 by Jeremy Tan at Wed May 01 21:41:59 EDT 2024
LINKS

Jeremy Tan, <a href="https://gist.github.com/Parcly-Taxel/4c072993b7ae0aa9c165a5c779aef021">Python program</a>

PROG

(Python) See link.

#8 by Jeremy Tan at Wed May 01 21:37:57 EDT 2024
LINKS

Jeremy Tan, <a href="/A372307/b372307_1.txt">Table of n, a(n) for n = 0..560</a>

STATUS

approved

editing

#5 by Jeremy Tan at Fri Apr 26 03:36:01 EDT 2024
STATUS

editing

proposed

#4 by Jeremy Tan at Fri Apr 26 03:20:10 EDT 2024
EXAMPLE

1, 1, 1, 1, 1, 1, ... 1, 0, 1, 2, 9, 44, ...

1, 0, 1, 2, 9, 44, ...

#3 by Jeremy Tan at Fri Apr 26 03:19:50 EDT 2024
FORMULA

T(n,k) ~ A089759(n,k)/exp(n).

EXAMPLE

Square array T(n,k) begins:

1, 1, 1, 1, 1, 1, ... 1, 0, 1, 2, 9, 44, ...

1, 0, 1, 10, 297, 13756, ...

1, 0, 1, 56, 13833, 6699824, ...

1, 0, 1, 346, 748521, 3993445276, ...

1, 0, 1, 2252, 44127009, 2671644472544, ...

1, 0, 1, 15184, 2750141241, 1926172117389136, ...

1, 0, 1, 104960, 178218782793, 1463447061709156064, ...

MATHEMATICA

Table[Abs[Integrate[Exp[-x] LaguerreL[n, x]^(s-n), {x, 0, Infinity}]], {s, 0, 9}, {n, 0, s}] // Flatten

#2 by Jeremy Tan at Fri Apr 26 02:53:22 EDT 2024
NAME

allocated for Jeremy TanSquare array read by antidiagonals: T(n,k) is the number of derangements of a multiset comprising n repeats of a k-element set.

DATA

1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 9, 10, 1, 0, 1, 1, 44, 297, 56, 1, 0, 1, 1, 265, 13756, 13833, 346, 1, 0, 1, 1, 1854, 925705, 6699824, 748521, 2252, 1, 0, 1, 1, 14833, 85394646, 5691917785, 3993445276, 44127009, 15184, 1, 0, 1

OFFSET

0,12

COMMENTS

A deck has k suits of n cards each. The deck is shuffled and dealt into k hands of n cards each. A match occurs for every card in the i-th hand of suit i. T(n,k) is the number of ways of achieving no matches. The probability of no matches is T(n,k)/((n*k)!/n!^k).

LINKS

Shalosh B. Ekhad, Christoph Koutschan and Doron Zeilberger, <a href="https://arxiv.org/abs/2101.10147">There are EXACTLY 1493804444499093354916284290188948031229880469556 Ways to Derange a Standard Deck of Cards (ignoring suits) [and many other such useful facts]</a>, arXiv:2101.10147 [math.CO], 2021.

S. Even and J. Gillis, <a href="https://doi.org/10.1017/S0305004100052154">Derangements and Laguerre polynomials</a>, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 79, Issue 1, January 1976, pp. 135-143.

B. H. Margolius, <a href="http://www.jstor.org/stable/3219303">The Dinner-Diner Matching Problem</a>, Mathematics Magazine, 76 (2003), pp. 107-118.

<a href="/index/Ca#cardmatch">Index entries for sequences related to card matching</a>

FORMULA

T(n,k) = (-1)^(n*k) * Integral_{x=0..oo} exp(-x)*L_n(x)^k dx, where L_n(x) is the Laguerre polynomial of degree n (Even and Gillis).

CROSSREFS

Rows 0-5 give A000012, A000166, A000459, A059073, A059074, A123297.

Columns 0-4 give A000012, A000007, A000012, A000172, A371252.

KEYWORD

allocated

nonn,tabl

AUTHOR

Jeremy Tan, Apr 26 2024

STATUS

approved

editing