editing
approved
editing
approved
A371871 := proc(n)
1/(1-x^3)/(1-x)^(n-1) ;
coeftayl(%, x=0, n) ;
end proc:
seq(A371871(n), n=0..60) ; # R. J. Mathar, Apr 22 2024
D-finite with recurrence 9*n*a(n) +3*(-17*n+16)*a(n-1) +3*(21*n-50)*a(n-2) +(-17*n+16)*a(n-3) +10*(2*n-5)*a(n-4)=0. - R. J. Mathar, Apr 22 2024
approved
editing
proposed
approved
editing
proposed
editing
proposed
1, 0, 1, 5, 18, 66, 246, 924, 3493, 13277, 50697, 194327, 747319, 2882061, 11142027, 43167573, 167561586, 651513594, 2537041938, 9892847952, 38623197264, 150959213886, 590626854072, 2312979822738, 9065733950526, 35561306875380, 139595183125750
allocated for Seiichi Manyama
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-3*k-2,n-3*k).
1, 0, 1, 5, 18, 66, 246, 924, 3493, 13277, 50697, 194327, 747319, 2882061, 11142027, 43167573, 167561586, 651513594, 2537041938, 9892847952, 38623197264, 150959213886, 590626854072, 2312979822738
0,4
a(n) = [x^n] 1/((1-x^3) * (1-x)^(n-1)).
(PARI) a(n) = sum(k=0, n\3, binomial(2*n-3*k-2, n-3*k));
Cf. A360150.
allocated
nonn
Seiichi Manyama, Apr 10 2024
approved
editing