[go: up one dir, main page]

login
Revision History for A370897 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Partial alternating sums of the number of abelian groups sequence (A000688).
(history; published version)
#8 by OEIS Server at Tue Mar 05 11:52:05 EST 2024
LINKS

Amiram Eldar, <a href="/A370897/b370897_1.txt">Table of n, a(n) for n = 1..10000</a>

#7 by Michael De Vlieger at Tue Mar 05 11:52:05 EST 2024
STATUS

reviewed

approved

Discussion
Tue Mar 05
11:52
OEIS Server: Installed first b-file as b370897.txt.
#6 by Joerg Arndt at Tue Mar 05 11:33:07 EST 2024
STATUS

proposed

reviewed

#5 by Amiram Eldar at Tue Mar 05 04:29:55 EST 2024
STATUS

editing

proposed

#4 by Amiram Eldar at Tue Mar 05 03:18:21 EST 2024
LINKS

Amiram Eldar, <a href="/A370897/b370897_1.txt">Table of n, a(n) for n = 1..10000</a>

#3 by Amiram Eldar at Tue Mar 05 03:17:27 EST 2024
NAME

Partial alternating sums of the number of abelian groups function sequence (A000688).

#2 by Amiram Eldar at Tue Mar 05 03:14:07 EST 2024
NAME

allocated for Amiram EldarPartial alternating sums of the number of abelian groups function (A000688).

DATA

1, 0, 1, -1, 0, -1, 0, -3, -1, -2, -1, -3, -2, -3, -2, -7, -6, -8, -7, -9, -8, -9, -8, -11, -9, -10, -7, -9, -8, -9, -8, -15, -14, -15, -14, -18, -17, -18, -17, -20, -19, -20, -19, -21, -19, -20, -19, -24, -22, -24, -23, -25, -24, -27, -26, -29, -28, -29, -28

OFFSET

1,8

LINKS

László Tóth, <a href="https://www.emis.de/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.

FORMULA

a(n) = Sum_{k=1..n} (-1)^(k+1) * A000688(k).

a(n) = k_1 * A021002 * n + k_2 * A084892 * n^(1/2) + k_3 * A084893 * n^(1/3) + O(n^(1/4 + eps)), where eps > 0 is arbitrarily small, k_j = -1 + 2 * Product_{i>=1} (1 - 1/2^(i/j)), k_1 = 2*A048651 - 1 = -0.422423809826..., k_2 = -0.924973966404..., and k_3 = -0.991478298912... (Tóth, 2017).

MATHEMATICA

f[n_] := Times @@ (PartitionsP[Last[#]] & /@ FactorInteger[n]); f[1] = 1; Accumulate[Array[(-1)^(#+1) * f[#] &, 100]]

PROG

(PARI) f(n) = vecprod(apply(numbpart, factor(n)[, 2]));

lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * f(k); print1(s, ", "))};

CROSSREFS
KEYWORD

allocated

sign,easy

AUTHOR

Amiram Eldar, Mar 05 2024

STATUS

approved

editing

#1 by Amiram Eldar at Tue Mar 05 03:04:50 EST 2024
NAME

allocated for Amiram Eldar

KEYWORD

allocated

STATUS

approved