[go: up one dir, main page]

login
Revision History for A369692 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Connected domination number of the n X n grid graph.
(history; published version)
#31 by Michael De Vlieger at Wed Mar 06 21:48:05 EST 2024
STATUS

proposed

approved

#30 by Andrew Howroyd at Wed Mar 06 21:13:52 EST 2024
STATUS

editing

proposed

#29 by Andrew Howroyd at Wed Mar 06 21:13:43 EST 2024
EXAMPLE

From Andrew Howroyd, Mar 06 2024: (Start)

STATUS

proposed

editing

#28 by Andrew Howroyd at Wed Mar 06 20:10:17 EST 2024
STATUS

editing

proposed

#27 by Andrew Howroyd at Wed Mar 06 19:47:37 EST 2024
EXAMPLE

From Andrew Howroyd, Mar 06 2024:

a(16) = 95 = 16 + 5*14 + 4*2 + 1.

. . . . . . . . . . . . . . . .

X X X X X X X X X X X X X X X X

. X . . X . . X . . X . . X . .

. X . . X . . X . . X . . X . .

. X . . X . . X . . X . . X X X

. X . . X . . X . . X . . X . .

. X . . X . . X . . X . . X . .

. X . . X . . X . . X . . X X X

. X . . X . . X . . X . . X . .

. X . . X . . X . . X . . X . .

. X . . X . . X . . X . . X X X

. X . . X . . X . . X . . X . .

. X . . X . . X . . X . . X . .

. X . . X . . X . . X . . X X X

. X . . X . . X . . X . . X . .

. X . . X . . X . . X . . X X .

(End)

#26 by Andrew Howroyd at Wed Mar 06 19:16:26 EST 2024
FORMULA

a(3*n) <= n*(3*n+1); a(3*n-1) <= 3*n^2 - 1; a(3*n-2) <= (n-1)*(3*n+1). Conjecturally these inequalities hold with equality for n > 1. - Andrew Howroyd, Mar 06 2024

STATUS

approved

editing

#25 by Michael De Vlieger at Mon Feb 26 14:16:44 EST 2024
STATUS

proposed

approved

#24 by Andrew Howroyd at Mon Feb 26 13:08:44 EST 2024
STATUS

editing

proposed

#23 by Andrew Howroyd at Mon Feb 26 13:06:17 EST 2024
LINKS

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ConnectedDominatingSetConnectedDominationNumber.html">Connected Dominating SetDomination Number</a>.

STATUS

approved

editing

#22 by N. J. A. Sloane at Mon Feb 26 10:01:37 EST 2024
STATUS

reviewed

approved