[go: up one dir, main page]

login
Revision History for A357151 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Coefficients in the power series A(x) such that: A(x) = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
(history; published version)
#12 by Paul D. Hanna at Fri Sep 16 22:01:44 EDT 2022
STATUS

editing

approved

#11 by Paul D. Hanna at Fri Sep 16 22:00:14 EDT 2022
LINKS

Paul D. Hanna, <a href="/A357151/b357151.txt">Table of n, a(n) for n = 0..400</a>

STATUS

approved

editing

#10 by Michael De Vlieger at Fri Sep 16 10:27:50 EDT 2022
STATUS

reviewed

approved

#9 by Joerg Arndt at Fri Sep 16 06:53:27 EDT 2022
STATUS

proposed

reviewed

#8 by Paul D. Hanna at Fri Sep 16 01:36:11 EDT 2022
STATUS

editing

proposed

#7 by Paul D. Hanna at Fri Sep 16 01:36:09 EDT 2022
FORMULA

(3) -x*A(x)^2 3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n.

STATUS

proposed

editing

#6 by Paul D. Hanna at Fri Sep 16 00:52:07 EDT 2022
STATUS

editing

proposed

#5 by Paul D. Hanna at Fri Sep 16 00:52:05 EDT 2022
NAME

Coefficients in the power series A(x) such that: A(Xx) = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.

STATUS

proposed

editing

#4 by Paul D. Hanna at Fri Sep 16 00:45:53 EDT 2022
STATUS

editing

proposed

#3 by Paul D. Hanna at Fri Sep 16 00:45:50 EDT 2022
NAME

allocated for Paul D. Hanna

Coefficients in the power series A(x) such that: A(X) = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.

DATA

1, 1, 3, 13, 60, 299, 1586, 8697, 49117, 283437, 1664128, 9908903, 59694494, 363179981, 2228272706, 13771458148, 85655772108, 535759514193, 3367801361510, 21264574306632, 134804893426581, 857682458939905, 5474890014327326, 35053167752718368, 225046818744827456

OFFSET

0,3

COMMENTS

Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1).

FORMULA

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.

(1) A(x) = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.

(2) x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ).

(3) -x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n.

(4) -A(x)^4 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n.

(5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n.

(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n.

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 60*x^4 + 299*x^5 + 1586*x^6 + 8697*x^7 + 49117*x^8 + 283437*x^9 + 1664128*x^10 + 9908903*x^11 + 59694494*x^12 + ...

such that

A(x) = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...

also

-A(x)^4 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...

PROG

(PARI) {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);

A[#A] = polcoeff(Ser(A) - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n ), #A-2); ); A[n+1]}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Paul D. Hanna, Sep 16 2022

STATUS

approved

editing