[go: up one dir, main page]

login
Revision History for A350921 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(0) = 3, a(1) = 3, and a(n) = 6*a(n-1) - a(n-2) - 4 for n >= 2.
(history; published version)
#11 by N. J. A. Sloane at Sat Jan 22 19:41:58 EST 2022
STATUS

proposed

approved

#10 by Hugo Pfoertner at Sat Jan 22 16:16:28 EST 2022
STATUS

editing

proposed

#9 by Hugo Pfoertner at Sat Jan 22 16:16:08 EST 2022
CROSSREFS
#8 by Hugo Pfoertner at Sat Jan 22 16:14:46 EST 2022
FORMULA

a(n) = 2*A001653(n) + 1 = 4*A011900(n-1) - 1 for n >= 1. - Hugo Pfoertner, Jan 22 2022

CROSSREFS
STATUS

proposed

editing

#7 by Stefano Spezia at Sat Jan 22 15:56:29 EST 2022
STATUS

editing

proposed

#6 by Stefano Spezia at Sat Jan 22 15:56:23 EST 2022
LINKS

<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-7,1).

FORMULA

G.f.: (3 - 18*x + 11*x^2)/((1 - x)*(1 - 6*x + x^2)). - Stefano Spezia, Jan 22 2022

KEYWORD

nonn,easy,changed

STATUS

proposed

editing

#5 by Max Alekseyev at Sat Jan 22 12:41:09 EST 2022
STATUS

editing

proposed

#4 by Max Alekseyev at Sat Jan 22 12:41:06 EST 2022
CROSSREFS

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350922, A350923, A350924, A350925, A350926.

STATUS

proposed

editing

#3 by Max Alekseyev at Sat Jan 22 12:34:39 EST 2022
STATUS

editing

proposed

#2 by Max Alekseyev at Sat Jan 22 12:34:35 EST 2022
NAME

allocated a(0) = 3, a(1) = 3, and a(n) = 6*a(n-1) - a(n-2) - 4 for Max Alekseyevn >= 2.

DATA

3, 3, 11, 59, 339, 1971, 11483, 66923, 390051, 2273379, 13250219, 77227931, 450117363, 2623476243, 15290740091, 89120964299, 519435045699, 3027489309891, 17645500813643, 102845515571963, 599427592618131, 3493720040136819, 20362892648202779, 118683635849079851, 691738922446276323

OFFSET

0,1

COMMENTS

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.

CROSSREFS

Cf. A350916.

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350922, A350923, A350924, A350925,

KEYWORD

allocated

nonn

AUTHOR

Max Alekseyev, Jan 22 2022

STATUS

approved

editing