reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
reviewed
approved
proposed
reviewed
editing
proposed
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, l_] := b[n, l] = If[n == 0, x^(l /. Infinity -> 0)[[3]], Sum[b[n - i, Sort[Append[l, i]][[1 ;; 3]]]*g[i]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, {Infinity, Infinity, Infinity}]}, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
approved
editing
editing
approved
b:= proc(n, i, l) option remember; `if`(n=0, x^subs(infinity=0, l)[3],
`if`(i<1, 0, add(b(n-i*j, i-1, , sort([l[], i$j])[1..3])*g(i)*binomial(n-1, i-1), i=1..n))
g(i)^j*combinat[multinomial](n, n-i*j, i$j)/j!, j=0..n/i)))
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, , [infinity$3])):
approved
editing