[go: up one dir, main page]

login
Revision History for A348939 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Odd numbers k for which A064989(sigma(k)) > A064989(k), and which are of the form p^(1+4k) * r^2, where p is prime of the form 1+4m, r > 1, and gcd(p,r) = 1.
(history; published version)
#9 by Susanna Cuyler at Thu Nov 04 20:47:45 EDT 2021
STATUS

proposed

approved

#8 by Amiram Eldar at Thu Nov 04 17:59:47 EDT 2021
STATUS

editing

proposed

#7 by Amiram Eldar at Thu Nov 04 17:59:45 EDT 2021
MATHEMATICA

q[n_] := Module[{f = FactorInteger[n]}, p = f[[;; , 1]]; e = f[[;; , 2]]; odde = Select[e, OddQ]; Length[e] > 1 && Length[odde] == 1 && Divisible[odde[[1]] - 1, 4] && Divisible[p[[Position[e, odde[[1]]][[1, 1]]]] - 1, 4]]; f[2, e_] := 1; f[p_, e_] := NextPrime[p, -1]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[1, 10000, 2], q[#] && s[DivisorSigma[1, #]] > s[#] &] (* Amiram Eldar, Nov 04 2021 *)

STATUS

proposed

editing

#6 by Antti Karttunen at Thu Nov 04 17:35:21 EDT 2021
STATUS

editing

proposed

#5 by Antti Karttunen at Thu Nov 04 12:37:03 EDT 2021
PROG

A064989(n) = { my(f = factor(n)); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f) };

#4 by Antti Karttunen at Thu Nov 04 12:33:30 EDT 2021
NAME

Odd numbers k for which A326042(A064989(sigma(k)) > A064989(k), and which are of the form p^(1+4k) * r^2, where p is prime of the form 1+4m, r > 1, and gcd(p,r) = 1.

COMMENTS

Any Obviously, any hypothetical odd perfect number would be neither in this sequence nor in A348938.

LINKS

<a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

<a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

PROG

A003961A064989(n) = { my(f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = nextprimeprecprime(f[i, 1]+-1)); factorback(f) }; \\ From A003961

A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};

A326042(n) = A064989(sigma(A003961(n)));

isA348749(n) = ((n%2)&&(A326042(A064989(sigma(n)) > A064989(n)));

CROSSREFS
#3 by Antti Karttunen at Thu Nov 04 09:45:43 EDT 2021
COMMENTS

Any hypothetical odd perfect number would be neither in this sequence nor in A348938.

#2 by Antti Karttunen at Thu Nov 04 06:54:17 EDT 2021
NAME

allocated Odd numbers k for Antti Karttunenwhich A326042(A064989(k)) > A064989(k), and which are of the form p^(1+4k) * r^2, where p is prime of the form 1+4m, r > 1, and gcd(p,r) = 1.

DATA

45, 117, 325, 333, 405, 549, 605, 657, 925, 1053, 1413, 1445, 1525, 1737, 1825, 2205, 2493, 2817, 2825, 2925, 2997, 3033, 3573, 3645, 3789, 3825, 3925, 4113, 4825, 4869, 4941, 5445, 5517, 5733, 5913, 5949, 6057, 6425, 6525, 6597, 6813, 6925, 7025, 7497, 7605, 7825, 7893, 8125, 8325, 8425, 8973, 9225, 9477, 9837, 9925

OFFSET

1,1

PROG

(PARI)

A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961

A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};

A326042(n) = A064989(sigma(A003961(n)));

isA228058(n) = if(!(n%2)||(omega(n)<2), 0, my(f=factor(n), y=0); for(i=1, #f~, if(1==(f[i, 2]%4), if((1==y)||(1!=(f[i, 1]%4)), return(0), y=1), if(f[i, 2]%2, return(0)))); (y));

isA348749(n) = (n%2&&(A326042(A064989(n)) > A064989(n)));

isA348939(n) = (isA228058(n)&&isA348749(n));

CROSSREFS

Intersection of A228058 and A348749.

Cf. A064989, A326042, A348938.

KEYWORD

allocated

nonn

AUTHOR

Antti Karttunen, Nov 04 2021

STATUS

approved

editing

#1 by Antti Karttunen at Thu Nov 04 05:07:19 EDT 2021
NAME

allocated for Antti Karttunen

KEYWORD

allocated

STATUS

approved