[go: up one dir, main page]

login
Revision History for A345008 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(0) = 1; a(4*n) = a(n) - a(n-1), a(4*n+1) = a(4*n+2) = a(4*n+3) = a(n).
(history; published version)
#6 by Susanna Cuyler at Sat Jun 05 16:44:57 EDT 2021
STATUS

reviewed

approved

#5 by Joerg Arndt at Sat Jun 05 11:21:59 EDT 2021
STATUS

proposed

reviewed

#4 by Ilya Gutkovskiy at Sat Jun 05 10:37:41 EDT 2021
STATUS

editing

proposed

#3 by Ilya Gutkovskiy at Sat Jun 05 10:03:56 EDT 2021
CROSSREFS
#2 by Ilya Gutkovskiy at Sat Jun 05 10:00:46 EDT 2021
NAME

allocated for Ilya Gutkovskiy

a(0) = 1; a(4*n) = a(n) - a(n-1), a(4*n+1) = a(4*n+2) = a(4*n+3) = a(n).

DATA

1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, -1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, -1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, -1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, -2, -1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, -1, 0, 0, 0, 1, 1, 1, 1, 0, 1

OFFSET

0,65

FORMULA

G.f. A(x) satisfies: A(x) = (1 + x + x^2 + x^3 - x^4) * A(x^4).

G.f.: Product_{k>=0} (1 + x^(4^k) + x^(2*4^k) + x^(3*4^k) - x^(4^(k+1))).

MATHEMATICA

a[0] = 1; a[n_] := Switch[Mod[n, 4], 0, a[n/4] - a[(n - 4)/4], 1, a[(n - 1)/4], 2, a[(n - 2)/4], 3, a[(n - 3)/4]]; Table[a[n], {n, 0, 105}]

nmax = 105; A[_] = 1; Do[A[x_] = (1 + x + x^2 + x^3 - x^4) A[x^4] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

nmax = 105; CoefficientList[Series[Product[(1 + x^(4^k) + x^(2 4^k) + x^(3 4^k) - x^(4^(k + 1))), {k, 0, Floor[Log[4, nmax]] + 1}], {x, 0, nmax}], x]

CROSSREFS
KEYWORD

allocated

sign

AUTHOR

Ilya Gutkovskiy, Jun 05 2021

STATUS

approved

editing

#1 by Ilya Gutkovskiy at Sat Jun 05 10:00:46 EDT 2021
NAME

allocated for Ilya Gutkovskiy

KEYWORD

allocated

STATUS

approved