proposed
approved
proposed
approved
editing
proposed
a(6) = 5 since 0, 14, 41, 77 and 111 are displayed by 6 segments.
__ __ __
| | | |__| |__| | | | | | |
|__| | | | | | | | | |
(0) (14) (41) (77) (111)
Steffen Eger, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Eger/eger6.html"> Restricted Weighted Integer Compositions and Extended Binomial Coefficients</a>, Journal of Integer Sequences, Vol. 16, Article 13.1.3, (2013). <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,1,1,5,1,1). <a href="/index/Ca#calculatordisplay">Index entries for sequences related to calculator display</a> <a href="/index/Com#comp">Index entries for sequences related to compositions</a>
<a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,1,1,5,1,1).
<a href="/index/Ca#calculatordisplay">Index entries for sequences related to calculator display</a>
<a href="/index/Com#comp">Index entries for sequences related to compositions</a>
allocated for Stefano Speziaa(n) is the number of nonnegative integers that can be represented in a 7-segment display by using only n segments (version A063720).
0, 0, 1, 1, 2, 7, 5, 16, 19, 39, 77, 103, 226, 334, 636, 1106, 1827, 3386, 5568, 10059, 17281, 29890, 52771, 90283, 159191, 274976, 479035, 835476, 1447278, 2528496, 4386143, 7640592, 13293308, 23106132, 40245277, 69946521, 121762316, 211791205, 368418674, 641125867
0,5
The nonnegative integers are displayed as in A063720.
Given the set S = {2, 3, 4, 5, 6, 7}, the function f defined in S as f(5) = 5 and f(s) = 1 elsewhere, a(n) is equal to the difference between the number b(n) of S-restricted f-weighted integer compositions of n with that of n-6, i.e., b(n-6). The latter one provides the number of all those excluded cases where a nonnegative integer is displayed with leading zeros. b(n) is calculated as the sum of polynomial coefficients or extended binomial coefficients (see Equation 3 in Eger) where the index of summation is positive and it covers the numbers of possible digits that can be displayed by n segments (see third formula).
Steffen Eger, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Eger/eger6.html"> Restricted Weighted Integer Compositions and Extended Binomial Coefficients</a>, Journal of Integer Sequences, Vol. 16, Article 13.1.3, (2013). <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,1,1,5,1,1). <a href="/index/Ca#calculatordisplay">Index entries for sequences related to calculator display</a> <a href="/index/Com#comp">Index entries for sequences related to compositions</a>
G.f.: x^2*(1 - x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)*(1 + x + x^2 + 5*x^3 + x^4 + x^5)/(1 - x^2 - x^3 - x^4 - 5*x^5 - x^6 - x^7).
a(n) = a(n-2) + a(n-3) + a(n-4) + 5*a(n-5) + a(n-6) + a(n-7) for n > 13.
a(n) = b(n) - b(n-6), where b(n) = [x^n] Sum_{k=max(1,ceiling(n/7))..floor(n/2)} P(x)^k with P(x) = x^2 + x^3 + x^4 + 5*x^5 + x^6 + x^7.
P[x_]:=x^2+x^3+x^4+5x^5+x^6+x^7; b[n_]:=Coefficient[Sum[P[x]^k, {k, Max[1, Ceiling[n/7]], Floor[n/2]}], x, n]; a[n_]:=b[n]-b[n-6]; Array[a, 40, 0]
allocated
nonn,base,easy
Stefano Spezia, Apr 11 2021
approved
editing
allocating
allocated
allocated for Stefano Spezia
allocating
approved