reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Andrew Howroyd, <a href="/A342989/b342989.txt">Table of n, a(n) for n = 2..1276</a> (first 50 rows)
approved
editing
proposed
approved
editing
proposed
35, 651, 1568, 651, 35;
(PARI)
MQ(n, g, x=1)={ \\ after Quadric in A269921.
my(Q=matrix(n+1, g+1)); Q[1, 1]=x;
for(n=1, n, for(g=0, min(n\2, g),
my(t = (1+x)*(2*n-1)/3 * Q[n, 1+g]
+ if(g && n>1, (2*n-3)*(2*n-2)*(2*n-1)/12 * Q[n-1, g])
+ sum(k = 1, n-1, sum(i = 0, g, (2*k-1) * (2*(n-k)-1) * Q[k, 1+i] * Q[n-k, 1+g-i]))/2);
Q[1+n, 1+g] = t * 6/(n+1); ));
Q
}
F(n, m, y, z)={my(Q=MQ(n, m, z)); sum(n=0, n, x^n*Ser(Q[1+n, ]/z, y)) + O(x*x^n)}
H(n, g=1)={my(p=F(n, g, 'y, 'z), v=Vec(polcoef(subst(p, x, serreverse(x*p^2)), g, 'y))); vector(#v, n, Vecrev(v[n], n))}
{ my(T=H(10)); for(n=1, #T, print(T[n])) }
T. R. S. Walsh, and A. B. Lehman, <a href="http://dx.doi.org/10.1016/0095-8956(75)90050-7">Counting rooted maps by genus. III: Nonseparable maps</a>, J. Combinatorial Theory Ser. B 18 (1975), 222-259, Table II.