[go: up one dir, main page]

login
Revision History for A339724 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Odd composite integers m such that A000032(3*m-J(m,5)) == 3*J(m,5) (mod m), where J(m,5) is the Jacobi symbol.
(history; published version)
#9 by Bruno Berselli at Wed Dec 16 05:52:52 EST 2020
STATUS

reviewed

approved

#8 by Michel Marcus at Wed Dec 16 03:36:02 EST 2020
STATUS

proposed

reviewed

#7 by Michel Marcus at Tue Dec 15 09:52:19 EST 2020
STATUS

editing

proposed

#6 by Michel Marcus at Tue Dec 15 09:52:09 EST 2020
REFERENCES

D. Andrica, V. Crisan, F. Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing. Arab J. Math. Sci. 24(1), 9-15 (2018).

LINKS

Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, <a href="https://doi.org/10.1016/j.ajmsc.2017.06.002">On Fibonacci and Lucas sequences modulo a prime and primality testing</a>, Arab Journal of Mathematical Sciences, 24(1), 9-15 (2018).

STATUS

reviewed

editing

#5 by Michel Marcus at Tue Dec 15 09:42:53 EST 2020
STATUS

proposed

reviewed

#4 by Ovidiu Bagdasar at Mon Dec 14 14:02:01 EST 2020
STATUS

editing

proposed

#3 by Ovidiu Bagdasar at Mon Dec 14 14:01:57 EST 2020
NAME

allocated for Ovidiu BagdasarOdd composite integers m such that A000032(3*m-J(m,5)) == 3*J(m,5) (mod m), where J(m,5) is the Jacobi symbol.

DATA

9, 21, 161, 341, 901, 1281, 1853, 3201, 4181, 5473, 5611, 5777, 6119, 6721, 9729, 10877, 11041, 12209, 12441, 13201, 14981, 15251, 16771, 17941, 20591, 20769, 20801, 23323, 25761, 27403, 27661, 28121, 28421, 29489, 33001, 34561, 38801, 39281, 41159, 42721

OFFSET

1,1

COMMENTS

The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1)*J(p,D) (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.

The composite integers m with the property V(k*m-J(m,D)) == V(k-1)*J(m,D) (mod m) are called generalized Pell-Lucas pseudoprimes of level k- and parameter a.

Here b=-1, a=1, D=5 and k=3, while V(m) is A000032(m) (Lucas numbers), with V(2)=3.

REFERENCES

D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.

D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).

D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

D. Andrica, V. Crisan, F. Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing. Arab J. Math. Sci. 24(1), 9-15 (2018).

MATHEMATICA

Select[Range[3, 43000, 2], CoprimeQ[#, 5] && CompositeQ[#] && Divisible[LucasL[3*# - JacobiSymbol[#, 5]] - 3*JacobiSymbol[#, 5], #] &]

CROSSREFS

Cf. A000032, A071904, A339125 (a=1, b=-1, k=1), A339517 (a=1, b=-1, k=2).

Cf. A339725 (a=3, b=-1), A339726 (a=5, b=-1), A339727 (a=7, b=-1).

KEYWORD

allocated

nonn,new

AUTHOR

Ovidiu Bagdasar, Dec 14 2020

STATUS

approved

editing

#2 by Ovidiu Bagdasar at Mon Dec 14 13:22:09 EST 2020
KEYWORD

allocating

allocated

#1 by Ovidiu Bagdasar at Mon Dec 14 13:22:09 EST 2020
NAME

allocated for Ovidiu Bagdasar

KEYWORD

allocating

STATUS

approved