reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
D. Andrica, V. Crisan, F. Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing. Arab J. Math. Sci. 24(1), 9-15 (2018).
Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, <a href="https://doi.org/10.1016/j.ajmsc.2017.06.002">On Fibonacci and Lucas sequences modulo a prime and primality testing</a>, Arab Journal of Mathematical Sciences, 24(1), 9-15 (2018).
reviewed
editing
proposed
reviewed
editing
proposed
allocated for Ovidiu BagdasarOdd composite integers m such that A000032(3*m-J(m,5)) == 3*J(m,5) (mod m), where J(m,5) is the Jacobi symbol.
9, 21, 161, 341, 901, 1281, 1853, 3201, 4181, 5473, 5611, 5777, 6119, 6721, 9729, 10877, 11041, 12209, 12441, 13201, 14981, 15251, 16771, 17941, 20591, 20769, 20801, 23323, 25761, 27403, 27661, 28121, 28421, 29489, 33001, 34561, 38801, 39281, 41159, 42721
1,1
The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1)*J(p,D) (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property V(k*m-J(m,D)) == V(k-1)*J(m,D) (mod m) are called generalized Pell-Lucas pseudoprimes of level k- and parameter a.
Here b=-1, a=1, D=5 and k=3, while V(m) is A000032(m) (Lucas numbers), with V(2)=3.
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).
D. Andrica, V. Crisan, F. Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing. Arab J. Math. Sci. 24(1), 9-15 (2018).
Select[Range[3, 43000, 2], CoprimeQ[#, 5] && CompositeQ[#] && Divisible[LucasL[3*# - JacobiSymbol[#, 5]] - 3*JacobiSymbol[#, 5], #] &]
allocated
nonn,new
Ovidiu Bagdasar, Dec 14 2020
approved
editing
allocating
allocated
allocated for Ovidiu Bagdasar
allocating
approved