[go: up one dir, main page]

login
Revision History for A339047 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(n) gives the multiplicity for A154777(n) representable as x^2 + 2*y^2 with positive integers x and y, for n >= 1.
(history; published version)
#4 by N. J. A. Sloane at Mon Dec 21 07:32:57 EST 2020
STATUS

proposed

approved

#3 by Wolfdieter Lang at Wed Dec 09 03:29:00 EST 2020
STATUS

editing

proposed

#2 by Wolfdieter Lang at Wed Dec 09 03:21:23 EST 2020
NAME

allocated a(n) gives the multiplicity for A154777(n) representable as x^2 + 2*y^2 with positive integers x and y, for Wolfdieter Langn >= 1.

DATA

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3

OFFSET

1,11

FORMULA

a(n) gives the number of occurrences of A154777(n) = x^2 + 2*y^2 with positive integers x and y. This is obtained from triangle A338432.

EXAMPLE

See A338432 for examples.

The pairs [A154777(n), a(n)] begin:

[3, 1], [6, 1], [9, 1], [11, 1], [12, 1], [17, 1], [18, 1], [19, 1], [22, 1], [24, 1], [27, 2], [33, 2], [34, 1], [36, 1], [38, 1], [41, 1], [43, 1], [44, 1], [48, 1], [51, 2], [54, 2], [57, 2], [59, 1], [66, 2], [67, 1], [68, 1], [72, 1], [73, 1], [75, 1], [76, 1], [81, 2], [82, 1], [83, 1], [86, 1], [88, 1], [89, 1], [96, 1], [97, 1], [99, 3], ...

CROSSREFS
KEYWORD

allocated

nonn,easy

AUTHOR

Wolfdieter Lang, Dec 09 2020

STATUS

approved

editing

#1 by Wolfdieter Lang at Fri Nov 20 17:25:08 EST 2020
NAME

allocated for Wolfdieter Lang

KEYWORD

allocated

STATUS

approved