[go: up one dir, main page]

login
Revision History for A338145 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangle read by rows: T(n,k) is the number of achiral colorings of the edges of a regular n-D orthotope (or ridges of a regular n-D orthoplex) using exactly k colors. Row n has n*2^(n-1) columns.
(history; published version)
#6 by N. J. A. Sloane at Wed Oct 14 10:39:03 EDT 2020
STATUS

proposed

approved

#5 by Michel Marcus at Wed Oct 14 02:12:39 EDT 2020
STATUS

editing

proposed

#4 by Michel Marcus at Wed Oct 14 02:12:36 EDT 2020
EXAMPLE

1

1 4 3 0

1 68 1200 7268 20025 27750 18900 5040 0 0 0 0

...

STATUS

proposed

editing

#3 by Robert A. Russell at Mon Oct 12 14:57:07 EDT 2020
STATUS

editing

proposed

#2 by Robert A. Russell at Mon Oct 12 14:38:52 EDT 2020
NAME

allocated for Robert ATriangle read by rows: T(n,k) is the number of achiral colorings of the edges of a regular n-D orthotope (or ridges of a regular n-D orthoplex) using exactly k colors. Row n has n*2^(n-1) columns. Russell

DATA

1, 1, 4, 3, 0, 1, 68, 1200, 7268, 20025, 27750, 18900, 5040, 0, 0, 0, 0, 1, 93022, 293878020, 90807857080, 7503022894800, 258528829444320, 4681671089961600, 50981530073846400, 363246007692204000

OFFSET

1,3

COMMENTS

An achiral coloring is identical to its reflection. A ridge is an (n-2)-face of an n-D polytope. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges (vertices). For n=3, the figure is a cube (octahedron) with 12 edges. The number of edges (ridges) is n*2^(n-1). The Schläfli symbols for the n-D orthotope (hypercube) and the n-D orthoplex (hyperoctahedron, cross polytope) are {4,...,3,3} and {3,3,...,4} respectively, with n-2 3's in each case. The figures are mutually dual.

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).

LINKS

K. Balasubramanian, <a href="https://doi.org/10.33187/jmsm.471940">Computational enumeration of colorings of hyperplanes of hypercubes for all irreducible representations and applications</a>, J. Math. Sci. & Mod. 1 (2018), 158-180.

FORMULA

A337410(n,k) = Sum_{j=1..n*2^(n-1)} T(n,j) * binomial(k,j).

T(n,k) = 2*A338143(n,k) - A338142(n,k) = A338142(n,k) - 2*A338144(n,k) = A338143(n,k) - A338144(n,k).

T(2,k) = A338149(2,k) = A325019(2,k) = A325011(2,k); T(3,k) = A338149(3,k).

EXAMPLE

Triangle begins with T(1,1):

1

1 4 3 0

1 68 1200 7268 20025 27750 18900 5040 0 0 0 0

For T(2,2)=4, the achiral colorings are AAAB, AABB, ABAB, and ABBB. For T(2,3)=3, the achiral colorings are ABAC, ABCB, and ACBC.

MATHEMATICA

m=1; (* dimension of color element, here an edge *)

Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n - m]];

FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);

CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3, n}]], 0, (per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]], 1, j2], 2j2], {j2, n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[])]);

PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0, cs]]]);

pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)

row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]

array[n_, k_] := row[n] /. b -> k

Table[LinearSolve[Table[Binomial[i, j], {i, 2^(n-m)Binomial[n, m]}, {j, 2^(n-m)Binomial[n, m]}], Table[array[n, k], {k, 2^(n-m)Binomial[n, m]}]], {n, m, m+4}] // Flatten

CROSSREFS

Cf. A338142 (oriented), A338143 (unoriented), A338144 (chiral), A337410 (k or fewer colors), A325019 (orthotope vertices, orthoplex facets).

Cf. A327090 (simplex), A338149 (orthoplex edges, orthotope ridges).

KEYWORD

allocated

nonn,tabf

AUTHOR

Robert A. Russell, Oct 12 2020

STATUS

approved

editing

#1 by Robert A. Russell at Mon Oct 12 14:24:01 EDT 2020
NAME

allocated for Robert A. Russell

KEYWORD

allocated

STATUS

approved