proposed
approved
proposed
approved
editing
proposed
allocated for Ilya Gutkovskiy
a(n) = (n!)^2 * Sum_{k=0..n} 4^(n-k) / (k!)^2.
1, 5, 81, 2917, 186689, 18668901, 2688321745, 526911062021, 134889231877377, 43704111128270149, 17481644451308059601, 8461115914433100846885, 4873602766713466087805761, 3294555470298303075356694437, 2582931488713869611079648438609, 2324638339842482649971683594748101
0,2
Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselI(0,2*sqrt(x)) / (1 - 4*x).
a(0) = 1; a(n) = 4 * n^2 * a(n-1) + 1.
Table[n!^2 Sum[4^(n - k)/k!^2, {k, 0, n}], {n, 0, 15}]
nmax = 15; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - 4 x), {x, 0, nmax}], x] Range[0, nmax]!^2
allocated
nonn
Ilya Gutkovskiy, Jan 27 2021
approved
editing
allocated for Ilya Gutkovskiy
recycled
allocated
editing
approved
allocated for Christine Patterson
allocated
recycled
approved
editing
allocated for Christine Patterson
allocated
approved