proposed
approved
proposed
approved
editing
proposed
Up to and including the 6th term, there is no constraint other than not using a term more than once, since it is impossible to have more than 12 primes as pairwise sums of 6 numbers. So one would first try to use the lexicographically smallest possible choice a(1..6) =?= (1, 2, ..., 6). But then one would have only 7 pairs (i,j) such that a(i) + a(j) is prime, 1 <= i < j <= 6. So one would need 12 - 7 = 5 more primes in {1, 2, ..., 6} + a(7), which is impossible. One can check that even a(1..5) =?= (1,...,5) does not allow one to find a(6) and a(7) in order to have 12 prime sums a(i) + a(j), 1 <= i < j <= 7. Nor is it possible to find a solution with a(5) equal to 6 or 7 or 8. One finds that a(5) = 9, and a(6) = 10, are the smallest possible choices for which a(7) can be found as to satisfy the requirement. In that case, a(7) = 27 is the smallest possible solution, which yields the 12 prime sums 1+2, 2+3, 1+4, 3+4, 2+9, 4+9, 1+10, 3+10, 9+10, 2+27, 4+27, 10+27.
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
That is, there are twelve 12 primes, counted with multiplicity, among the 21 pairwise sums of any 7 consecutive terms.
proposed
editing
editing
proposed
Conjectured to be a permutation of the positive integers. See A329572 for the "nonnegative" variant: (same definition but with n >= 0 and a(0) terms >= 0, ), leading to a quite different sequence.
proposed
editing
editing
proposed