reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
O.g.f. for column k >= 0: Sum_{n>=0} T(n,k)*x^n = 3/4 + (1 + k*x)^2/(4*(1 - k*x^2)) - (1/2) * Sum_{d >= 1} (phi(d)/d) * log(1 - k*x^d). - Petros Hadjicostas, Feb 07 2021
O.g.f. for column k: Sum_{n>=0} T(n,k)*x^n = 13/4 + (1 + k*x)^2/(4*(1 - k*x^2)) - (1/2) * Sum_{d >= 1} (phi(d)/d) * log(1 - k*x^d). - Petros Hadjicostas, Feb 07 2021
O.g.f. for column k: Sum_{n>=0} T(n,k)*x^n = 1/4 + (1 + k*x)^2/(4*(1 - k*x^2)) - (1/2) * Sum_{d >= 1} (phi(d)/d) * log(1 - k*x^d). - Petros Hadjicostas, Feb 07 2021
proposed
editing
editing
proposed
Linear recurrence for row n: T(n,k) = Sum_{j=0..n} -binomial(j-n-1,j+1) * T(n,k-1-j) for k >= n + 1.
proposed
editing
editing
proposed
T(n,k) = [n==0] + [n>0] * (k^floor((n+1)/2) + k^ceiling((n+1)/2)) / 4 + (1/2n(2*n)) * Sum_{d|n} phi(d) * k^(n/d)).
approved
editing