[go: up one dir, main page]

login
Revision History for A321124 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = (4*n^3 - 6*n^2 + 14*n + 3)/3.
(history; published version)
#11 by Michel Marcus at Sun Dec 30 05:09:14 EST 2018
STATUS

reviewed

approved

#10 by Joerg Arndt at Sun Dec 30 04:35:59 EST 2018
STATUS

proposed

reviewed

#9 by Michel Marcus at Sun Dec 30 01:50:44 EST 2018
STATUS

editing

proposed

#8 by Michel Marcus at Sun Dec 30 01:50:40 EST 2018
REFERENCES

Rudolf M. Schürer, High-Dimensional Numerical Integration on Parallel Computers, Phd Dissertation, 2001. p. 80.

LINKS

Rudolf M. Schürer, <a href="https://pdfs.semanticscholar.org/9d10/b4c1dc2118cce7865a193660be05e90d145a.pdf">High-Dimensional Numerical Integration on Parallel Computers</a>, Phd Dissertation, 2001. p. 80.

STATUS

approved

editing

#7 by N. J. A. Sloane at Sat Dec 29 23:53:06 EST 2018
STATUS

proposed

approved

#6 by Franck Maminirina Ramaharo at Sat Dec 29 23:48:20 EST 2018
STATUS

editing

proposed

#5 by Franck Maminirina Ramaharo at Sat Dec 29 07:22:23 EST 2018
LINKS

Ronald Cools, <a href="https://doi.org/10.1016/S0377-0427(99)00229-0">Monomial cubature rules since "Stroud": a compilation - part 2, </a>, Journal of Computational and Applied Mathematics - Numerical evaluation of integrals Vol. 112 (1999), 21-27.

#4 by Franck Maminirina Ramaharo at Sat Dec 29 05:58:59 EST 2018
LINKS

Ronald Cools, <a href="https://doi.org/10.1016/S0377-0427(99)00229-0">Monomial cubature rules since "Stroud": a compilation - part 2, Journal of Computational and Applied Mathematics - Numerical evaluation of integrals Vol. 112 (1999), 21-27.

#3 by Franck Maminirina Ramaharo at Sat Dec 29 05:57:10 EST 2018
COMMENTS

For n >= 5, a(n) is the number of evaluation points on the n-dimensional cube in Phillips-DobrodevDobrodeev's degree 7 cubature rule.

LINKS

Ronald Cools, <a href="http://nines.cs.kuleuven.be/ecf/ndim_C.html">Encyclopaedia of Cubature formulae for the n-dimensional cubeFormulas</a>

<a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

FORMULA

a(n) = 8*binomial(n, 3) + 4*binomial(n, 2) + 4*binomial(n , 1) + 1.

PROG

(Maxima) makelist((4*n^3 - 6*n^2 + 14*n + 3)/3, n, 0, 50);

#2 by Franck Maminirina Ramaharo at Mon Dec 17 08:41:08 EST 2018
NAME

allocated for Franck Maminirina Ramaharo

a(n) = (4*n^3 - 6*n^2 + 14*n + 3)/3.

DATA

1, 5, 13, 33, 73, 141, 245, 393, 593, 853, 1181, 1585, 2073, 2653, 3333, 4121, 5025, 6053, 7213, 8513, 9961, 11565, 13333, 15273, 17393, 19701, 22205, 24913, 27833, 30973, 34341, 37945, 41793, 45893, 50253, 54881, 59785, 64973, 70453, 76233, 82321, 88725

OFFSET

0,2

COMMENTS

For n >= 5, a(n) is the number of evaluation points on the n-dimensional cube in Phillips-Dobrodev's degree 7 cubature rule.

REFERENCES

Rudolf M. Schürer, High-Dimensional Numerical Integration on Parallel Computers, Phd Dissertation, 2001. p. 80.

LINKS

Ronald Cools, <a href="http://nines.cs.kuleuven.be/ecf/ndim_C.html">Cubature formulae for the n-dimensional cube</a>

Ronald Cools, <a href="https://doi.org/10.1016/S0377-0427(99)00229-0">Monomial cubature rules since “Stroud”: a compilation - part 2, Journal of Computational and Applied Mathematics - Numerical evaluation of integrals Vol. 112 (1999), 21-27.

Ronald Cools and Philip Rabinowitz, <a href="https://doi.org/10.1016/0377-0427(93)90027-9">Monomial cubature rules since "Stroud": a compilation</a>, Journal of Computational and Applied Mathematics Vol. 48 (1993), 309-326.

L. N. Dobrodeev, <a href="https://doi.org/10.1016/0041-5553(70)90084-4">Cubature formulas of the seventh order of accuracy for a hypersphere and a hypercube</a>, USSR Computational Mathematics and Mathematical Physics Vol. 10 (1970), 252-253.

G. M. Phillips, <a href="https://doi.org/10.1093/comjnl/10.3.297">Numerical integration over an N-dimensional rectangular region</a>, The Computer Journal Vol. 10 (1967), 297-299.

<a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1)

FORMULA

a(n) = 8*binomial(n,3) + 4*binomial(n,2) + 4*n + 1.

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4.

a(n) = a(n-1) + A128445(n+1), n >= 1.

E.g.f.: (1/3)*(3 + 12*x + 6*x^2 + 4*x^3)*exp(x).

G.f.: (1 + x - x^2 + 7*x^3)/(1 - x)^4.

MATHEMATICA

Table[(4*n^3 - 6*n^2 + 14*n + 3)/3, {n, 0, 50}]

PROG

(Maxima) makelist((4*n^3 - 6*n^2 + 14*n + 3)/3, n, 0, 50);

KEYWORD

allocated

nonn,easy

AUTHOR
STATUS

approved

editing

Discussion
Mon Dec 24
12:52
OEIS Server: This sequence has not been edited or commented on for a week
yet is not proposed for review.  If it is ready for review, please
visit https://oeis.org/draft/A321124 and click the button that reads
"These changes are ready for review by an OEIS Editor."

Thanks.
  - The OEIS Server