[go: up one dir, main page]

login
Revision History for A319878 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Odd numbers whose product of prime indices (A003963) is a square of a squarefree number (A062503).
(history; published version)
#43 by Susanna Cuyler at Tue Dec 18 17:07:23 EST 2018
STATUS

proposed

approved

#42 by Gus Wiseman at Tue Dec 18 10:22:00 EST 2018
STATUS

editing

proposed

#41 by Gus Wiseman at Mon Dec 17 22:54:25 EST 2018
#40 by Gus Wiseman at Mon Dec 17 22:34:59 EST 2018
NAME

allocated for Gus WisemanOdd numbers whose product of prime indices (A003963) is a square of a squarefree number (A062503).

DATA

1, 7, 9, 23, 25, 97, 121, 151, 161, 169, 175, 183, 185, 195, 207, 225, 227, 289, 541, 661, 679, 687, 781, 841, 847, 873, 957, 961, 1009, 1089, 1193, 1427, 1563, 1589, 1681, 1819, 1849, 1879, 1895, 2023, 2043, 2167, 2193, 2209, 2231, 2425, 2437, 2585, 2601

OFFSET

1,2

COMMENTS

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of 2-regular (all vertex-degrees are 2) multiset partitions (no empty parts).

EXAMPLE

The sequence of multiset partitions whose MM-numbers belong to the sequence begins:

1: {}

7: {{1,1}}

9: {{1},{1}}

23: {{2,2}}

25: {{2},{2}}

97: {{3,3}}

121: {{3},{3}}

151: {{1,1,2,2}}

161: {{1,1},{2,2}}

169: {{1,2},{1,2}}

175: {{2},{2},{1,1}}

183: {{1},{1,2,2}}

185: {{2},{1,1,2}}

195: {{1},{2},{1,2}}

207: {{1},{1},{2,2}}

225: {{1},{1},{2},{2}}

227: {{4,4}}

289: {{4},{4}}

541: {{1,1,3,3}}

661: {{5,5}}

679: {{1,1},{3,3}}

687: {{1},{1,3,3}}

781: {{3},{1,1,3}}

841: {{1,3},{1,3}}

847: {{1,1},{3},{3}}

873: {{1},{1},{3,3}}

957: {{1},{3},{1,3}}

961: {{5},{5}}

MATHEMATICA

primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];

Select[Range[1, 100, 2], Or[#==1, SameQ[##, 2]&@@Last/@FactorInteger[Times@@primeMS[#]]]&]

KEYWORD

allocated

nonn

AUTHOR

Gus Wiseman, Dec 17 2018

STATUS

approved

editing

#39 by Gus Wiseman at Mon Dec 17 22:34:59 EST 2018
NAME

allocated for Gus Wiseman

KEYWORD

recycled

allocated

#38 by Bruno Berselli at Sun Dec 16 13:22:36 EST 2018
STATUS

reviewed

approved

#37 by Michel Marcus at Sat Dec 15 03:49:20 EST 2018
STATUS

proposed

reviewed

#36 by Joerg Arndt at Sat Dec 15 03:38:55 EST 2018
STATUS

editing

proposed

#35 by Joerg Arndt at Sat Dec 15 03:38:49 EST 2018
NAME

a(n) = primepi(A059785(n + 1)) - primepi(A059785(n)).

DATA

1, 2, 11, 314, 339730, 797177366934

OFFSET

1,2

FORMULA

a(n) = primepi(A059785(n)) - Sum_{k=1..n-1} a(i). - David A. Corneth, Oct 01 2018

MATHEMATICA

Differences@ PrimePi@ NestList[NextPrime[#^2, -1] &, 2, 5] (* Michael De Vlieger, Nov 07 2018 *)

PROG

(PARI) first(n) = my(res = vector(n)); res[1] = 1; t = 1; p = 2; for(i = 2, n, p = precprime(p^2); c = primepi(p) - t; res[i] = c; t+=c); res \\ David A. Corneth, Oct 01 2018

CROSSREFS

Cf. A059785.

KEYWORD

nonn,more,changed

recycled

AUTHOR

Lear Young, Sep 30 2018

EXTENSIONS

a(6) from Amiram Eldar, Nov 08 2018

#34 by N. J. A. Sloane at Fri Dec 14 20:13:08 EST 2018
STATUS

proposed

editing