reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
6, 8, 15, 26, 69, 134, 393, 1556, 4659, 9314, 27933, 921327, 85680249, 171360494, 2227686253, 17821489976, 124750429783, 19336316610785, 4544034403522255, 3567067006764843005, 203322819385596050031, 25008706784428314148401, 825287323886134366896771, 91606892951360914725537141, 1923744751978579209236279751
Any nonzero number other than 4 or a prime could be chosen for a(1) so as to generate a nontrivial sequence (because A056240(r)=r for r=4 or a prime). In this sequence a(1) is set to 6 because it is the smallest composite number which is the sum of prime divisors of a greater number (8), and is therefore the smallest starting value for a non-stationary sequence of this kind. Let m = A056240(a(n-1)-q), where q is the greatest (prime or 4) < a(n-1)-1. Then a(n) = m*q, since sopfr(m*q) = sopf(m)+sopf(q) = a(n-1). Each term represents a step up (from the previous term) in the number of repeated iterations of sopfr required to reach a prime; a(n) >= A048133(n).
Let m = A056240(a(n-1)-q), where q is the greatest (prime or 4) < a(n-1)-1. Then a(n) = m*q, since sopfr(m*q) = sopf(m)+sopf(q) = a(n-1). Each term represents a step up (from the previous term) in the number of repeated iterations of sopfr required to reach a prime; a(n) >= A048133(n).
nonn,more
Terms a(18) onward from Max Alekseyev, Sep 20 2024
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
Starting with a(1) = 6, a(n) is the smallest number whose sum of prime divisors (taken with multiplicity) is a(n-1). In other words , a(n) = A056240(a(n-1)).
Any nonzero number other than 4 or a prime could be chosen for a(1) so as to generate a nontrivial sequence (because A056240(r)=r for r=4 or a prime). In this sequence a(1) is set to 6 because it is the smallest nonzero composite number which is the sum of prime divisors of a greater number (8), and is therefore the smallest starting value for a non-stationary sequence of this kind. Let m = A056240(a(n-1)-q), where q is the greatest (prime or 4) < a(n-1)-1. Then a(n) = m*q, since sopfr(m*q) = sopf(m)+sopf(q) = a(n-1). Each term represents a step up (from the previous term) in the number of repeated iterations of sopfr required to reach a prime; a(n) >= A048133(n).
approved
editing
editing
approved
Any non zero nonzero number other than 4 or a prime could be chosen for a(1) so as to generate a non trivial nontrivial sequence (because A056240(r)=r for r=4 or any a prime). In this sequence a(1) is set to 6 because it is the smallest non zero nonzero composite number which is the sum of prime divisors of a greater number (8), and is therefore the smallest starting value for a non -stationary sequence of this kind. Let m = A056240(a(n-1)-q), where q is the greatest (prime or 4) < a(n-1)-1. Then a(n) = m*q, since sopfr(m*q) = sopf(m)+sopf(q) = a(n-1). Each term represents a step up (from the previous term) in the number of repeated iterations of sopfr required to reach a prime; a(n) >= A048133(n).