proposed
approved
proposed
approved
editing
proposed
editing
proposed
a(n) = invmod(Fibonacci(prime(in)), Fibonacci(prime(in+1)).
a(n) = invmod(fibFibonacci(prime(i)), fibFibonacci(prime(i+1)).
a:= n-> (f-> (1/f(n) mod f(n+1)))(j->combinat[fibonacci](ithprime(j))):
seq(a(n), n=1..25); # Alois P. Heinz, Aug 12 2019
Multiplicative inverse of FibFibonacci(prime(n)) modulo FibFibonacci(prime(n+1)).
Since Fibonacci numbers have the property that GCDgcd(x,y) = GCDgcd(fibFibonacci(x), fibFibonacci(y)), the modular inverse will always exist for this sequence.
Multiplicative inverse of Fib(prime(n)) modulo Fib(prime(n+1)).
a(n) = invmod(fib(prime(i)), fib(prime(i+1)).
proposed
editing
editing
proposed