[go: up one dir, main page]

login
Revision History for A308979 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Sum of the third largest parts in the partitions of n into 7 primes.
(history; published version)
#8 by Wesley Ivan Hurt at Fri Oct 15 14:53:49 EDT 2021
STATUS

editing

approved

#7 by Wesley Ivan Hurt at Fri Oct 15 14:53:39 EDT 2021
FORMULA

a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} A010051c(i) * A010051c(j) * A010051c(k) * A010051c(l) * A010051c(m) * A010051c(o) * A010051c(n-i-j-k-l-m-o) * j, where c = A010051.

STATUS

approved

editing

#6 by Susanna Cuyler at Thu Jul 04 15:28:49 EDT 2019
STATUS

proposed

approved

#5 by Wesley Ivan Hurt at Thu Jul 04 11:01:01 EDT 2019
STATUS

editing

proposed

#4 by Wesley Ivan Hurt at Thu Jul 04 10:49:20 EDT 2019
FORMULA

a(n) = A308974(n) - A308975(n) - A308976(n) - A308977(n) - A308978(n) - A307637(n) - A308980(n).

#3 by Wesley Ivan Hurt at Thu Jul 04 10:09:44 EDT 2019
NAME

allocated for Wesley Ivan HurtSum of the third largest parts in the partitions of n into 7 primes.

DATA

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 5, 5, 8, 10, 12, 11, 19, 18, 27, 28, 35, 36, 57, 48, 67, 67, 87, 82, 121, 99, 146, 126, 176, 156, 232, 181, 271, 238, 336, 277, 414, 325, 500, 405, 588, 480, 722, 542, 843, 660, 977, 752, 1172, 851, 1374

OFFSET

0,15

LINKS

<a href="/index/Par#part">Index entries for sequences related to partitions</a>

FORMULA

a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} A010051(i) * A010051(j) * A010051(k) * A010051(l) * A010051(m) * A010051(o) * A010051(n-i-j-k-l-m-o) * j.

MATHEMATICA

Table[Sum[Sum[Sum[Sum[Sum[Sum[j*(PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[o] - PrimePi[o - 1]) (PrimePi[n - i - j - k - l - m - o] - PrimePi[n - i - j - k - l - m - o - 1]), {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}]

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Wesley Ivan Hurt, Jul 04 2019

STATUS

approved

editing

#2 by Wesley Ivan Hurt at Thu Jul 04 10:09:44 EDT 2019
NAME

allocated for Wesley Ivan Hurt

KEYWORD

recycled

allocated

#1 by Russ Cox at Sun Jan 27 08:30:53 EST 2019
KEYWORD

recycled

STATUS

approved