proposed
approved
proposed
approved
editing
proposed
allocated for Wesley Ivan HurtSum of the smallest parts in the partitions of n into 7 squarefree parts.
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 8, 10, 13, 15, 22, 25, 33, 37, 49, 55, 71, 77, 98, 109, 136, 148, 182, 199, 243, 264, 314, 344, 413, 441, 522, 567, 663, 711, 829, 896, 1036, 1106, 1269, 1370, 1572, 1666, 1903, 2041, 2316, 2460, 2780, 2971, 3350, 3546
0,10
<a href="/index/Par#part">Index entries for sequences related to partitions</a>
a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3} Sum_{i=j..floor((n-j-k-l-m-o)/2)} mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o)^2 * o, where mu is the Möbius function (A008683).
Table[Sum[Sum[Sum[Sum[Sum[Sum[o * MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o]^2, {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}]
allocated
nonn
Wesley Ivan Hurt, Jul 03 2019
approved
editing
allocated for Wesley Ivan Hurt
recycled
allocated
recycled
approved