[go: up one dir, main page]

login
Revision History for A308954 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Sum of the smallest parts in the partitions of n into 7 squarefree parts.
(history; published version)
#6 by Susanna Cuyler at Wed Jul 03 06:12:27 EDT 2019
STATUS

proposed

approved

#5 by Wesley Ivan Hurt at Wed Jul 03 02:51:04 EDT 2019
STATUS

editing

proposed

#4 by Wesley Ivan Hurt at Wed Jul 03 02:31:20 EDT 2019
FORMULA

a(n) = A308953(n) - A308955(n) - A308956(n) - A308957(n) - A308958(n) - A308959(n) - A308960(n).

#3 by Wesley Ivan Hurt at Wed Jul 03 01:58:12 EDT 2019
NAME

allocated for Wesley Ivan HurtSum of the smallest parts in the partitions of n into 7 squarefree parts.

DATA

0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 8, 10, 13, 15, 22, 25, 33, 37, 49, 55, 71, 77, 98, 109, 136, 148, 182, 199, 243, 264, 314, 344, 413, 441, 522, 567, 663, 711, 829, 896, 1036, 1106, 1269, 1370, 1572, 1666, 1903, 2041, 2316, 2460, 2780, 2971, 3350, 3546

OFFSET

0,10

LINKS

<a href="/index/Par#part">Index entries for sequences related to partitions</a>

FORMULA

a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3} Sum_{i=j..floor((n-j-k-l-m-o)/2)} mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o)^2 * o, where mu is the Möbius function (A008683).

MATHEMATICA

Table[Sum[Sum[Sum[Sum[Sum[Sum[o * MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o]^2, {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}]

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Wesley Ivan Hurt, Jul 03 2019

STATUS

approved

editing

#2 by Wesley Ivan Hurt at Wed Jul 03 01:58:12 EDT 2019
NAME

allocated for Wesley Ivan Hurt

KEYWORD

recycled

allocated

#1 by Russ Cox at Sun Jan 27 08:30:53 EST 2019
KEYWORD

recycled

STATUS

approved