[go: up one dir, main page]

login
Revision History for A308953 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Sum of all the parts in the partitions of n into 7 squarefree parts.
(history; published version)
#10 by Wesley Ivan Hurt at Sun Mar 03 07:49:35 EST 2024
STATUS

editing

approved

#9 by Wesley Ivan Hurt at Sun Mar 03 07:49:31 EST 2024
MATHEMATICA

Table[n*Sum[Sum[Sum[Sum[Sum[Sum[MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o]^2, {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}]

STATUS

approved

editing

#8 by Harvey P. Dale at Sun Feb 25 16:57:29 EST 2024
STATUS

editing

approved

#7 by Harvey P. Dale at Sun Feb 25 16:57:25 EST 2024
MATHEMATICA

Table[Total[Flatten[Select[IntegerPartitions[n, {7}], AllTrue[#, SquareFreeQ]&]]], {n, 0, 50}] (* Harvey P. Dale, Feb 25 2024 *)

STATUS

approved

editing

#6 by Susanna Cuyler at Wed Jul 03 06:12:10 EDT 2019
STATUS

proposed

approved

#5 by Wesley Ivan Hurt at Wed Jul 03 02:50:58 EDT 2019
STATUS

editing

proposed

#4 by Wesley Ivan Hurt at Wed Jul 03 02:27:24 EDT 2019
FORMULA

a(n) = A308954(n) + A308955(n) + A308956(n) + A308957(n) + A308958(n) + A308959(n) + A308960(n).

#3 by Wesley Ivan Hurt at Wed Jul 03 01:50:26 EDT 2019
NAME

allocated for Wesley Ivan HurtSum of all the parts in the partitions of n into 7 squarefree parts.

DATA

0, 0, 0, 0, 0, 0, 0, 7, 8, 18, 20, 44, 60, 104, 126, 180, 224, 340, 396, 551, 640, 882, 1034, 1357, 1536, 2025, 2314, 2943, 3304, 4176, 4680, 5797, 6464, 7887, 8806, 10605, 11664, 14023, 15504, 18291, 20040, 23657, 25956, 30272, 32956, 38295, 41860, 48269

OFFSET

0,8

LINKS

<a href="/index/Par#part">Index entries for sequences related to partitions</a>

FORMULA

a(n) = n * Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3} Sum_{i=j..floor((n-j-k-l-m-o)/2)} mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o)^2, where mu is the Möbius function (A008683).

a(n) = n * A308952(n).

MATHEMATICA

Table[n*Sum[Sum[Sum[Sum[Sum[Sum[MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o]^2, {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}]

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Wesley Ivan Hurt, Jul 03 2019

STATUS

approved

editing

#2 by Wesley Ivan Hurt at Wed Jul 03 01:50:26 EDT 2019
NAME

allocated for Wesley Ivan Hurt

KEYWORD

recycled

allocated

#1 by Russ Cox at Sun Jan 27 08:30:53 EST 2019
KEYWORD

recycled

STATUS

approved