proposed
approved
proposed
approved
editing
proposed
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k)^2, where mu(n) is the Möbius function (A008683).
proposed
editing
editing
proposed
allocated for Wesley Ivan HurtNumber of partitions of n into 4 squarefree parts.
0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 11, 11, 15, 15, 19, 20, 25, 24, 30, 30, 37, 36, 44, 43, 53, 52, 60, 60, 71, 69, 80, 80, 93, 92, 106, 104, 122, 119, 135, 134, 155, 152, 172, 172, 194, 192, 213, 212, 239, 234, 257, 256, 290, 281, 308, 305, 343, 336
0,7
<a href="/index/Par#part">Index entries for sequences related to partitions</a>
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k)^2, where mu(n) is the Möbius function (A008683).
Table[Sum[Sum[Sum[MoebiusMu[k]^2*MoebiusMu[j]^2*MoebiusMu[i]^2*MoebiusMu[n - i - j - k]^2, {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]
Cf. A008683.
allocated
nonn
Wesley Ivan Hurt, Jun 23 2019
approved
editing
allocated for Wesley Ivan Hurt
recycled
allocated
recycled
approved