[go: up one dir, main page]

login
Revision History for A307975 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
G.f. A(x) satisfies: A(x) = x * exp(Sum_{k>=1} (A(x^k) + sigma(k)*x^k)/k).
(history; published version)
#7 by Susanna Cuyler at Wed May 08 22:17:40 EDT 2019
STATUS

proposed

approved

#6 by Ilya Gutkovskiy at Wed May 08 11:57:28 EDT 2019
STATUS

editing

proposed

#5 by Ilya Gutkovskiy at Wed May 08 11:47:42 EDT 2019
MATHEMATICA

a[n_] := a[n] = SeriesCoefficient[x Product[1/(1 - x^k)^(a[k] + 1), {k, 1, n - 1}], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 0, 28}]

#4 by Ilya Gutkovskiy at Wed May 08 11:19:12 EDT 2019
CROSSREFS
#3 by Ilya Gutkovskiy at Wed May 08 11:15:17 EDT 2019
NAME

allocated for Ilya Gutkovskiy

G.f. A(x) satisfies: A(x) = x * exp(Sum_{k>=1} (A(x^k) + sigma(k)*x^k)/k).

DATA

0, 1, 2, 6, 17, 52, 161, 524, 1739, 5929, 20562, 72471, 258596, 932897, 3395922, 12459900, 46028216, 171056252, 639072199, 2398886256, 9042816457, 34217811625, 129926976921, 494892472911, 1890469032715, 7240573075556, 27799085344845, 106970043377619, 412474047216418

OFFSET

0,3

FORMULA

G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * Product_{n>=1} 1/(1 - x^n)^(a(n)+1).

Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d*(a(d) + 1) ) * a(n-k+1).

EXAMPLE

G.f.: A(x) = x + 2*x^2 + 6*x^3 + 17*x^4 + 52*x^5 + 161*x^6 + 524*x^7 + 1739*x^8 + 5929*x^9 + 20562*x^10 + ...

MATHEMATICA

terms = 28; A[_] = 0; Do[A[x_] = x Exp[Sum[(A[x^k] + DivisorSigma[1, k] x^k)/k, {k, 1, terms}]] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]

a[n_] := a[n] = SeriesCoefficient[x Product[1/(1 - x^k)^(a[k] + 1), {k, 1, n - 1}], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 0, 28}]

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Ilya Gutkovskiy, May 08 2019

STATUS

approved

editing

#2 by Ilya Gutkovskiy at Wed May 08 11:15:17 EDT 2019
NAME

allocated for Ilya Gutkovskiy

KEYWORD

recycled

allocated

#1 by Russ Cox at Sun Jan 27 08:30:53 EST 2019
KEYWORD

recycled

STATUS

approved