reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
a(n) ~ c / (sqrt(n) * r^n), where r = 0.241970723224463308846762732757915397312... (= radius of convergence A166952) and c = 0.716940866073606328... - Vaclav Kotesovec, Apr 14 2018
editing
proposed
allocated for Ilya Gutkovskiya(n) = [x^n] theta_3(x)^n/(1 - x), where theta_3() is the Jacobi theta function.
1, 3, 9, 27, 89, 333, 1341, 5449, 21697, 84663, 327829, 1275739, 5020457, 19964623, 79883141, 320317827, 1284656385, 5152761033, 20686311261, 83182322509, 335110196569, 1352277390001, 5463873556381, 22097867887045, 89441286136465, 362277846495883, 1468465431530457
0,2
a(n) = number of integer lattice points inside the n-dimensional hypersphere of radius sqrt(n).
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>
<a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>
a(n) = A122510(n,n).
Table[SeriesCoefficient[EllipticTheta[3, 0, x]^n/(1 - x), {x, 0, n}], {n, 0, 26}]
Table[SeriesCoefficient[1/(1 - x) Sum[x^k^2, {k, -n, n}]^n, {x, 0, n}], {n, 0, 26}]
allocated
nonn
Ilya Gutkovskiy, Apr 14 2018
approved
editing
allocated for Ilya Gutkovskiy
allocated
approved