editing
approved
editing
approved
proposed
editing
editing
proposed
Row sums of are A020877.
Row sums of A020877.
approved
editing
proposed
approved
editing
proposed
allocated for Eric W. Weisstein
Triangle T(n,k) of the numbers of k-matchings in the n-Moebius ladder (0 <= k <= n, n > 2)
1, 9, 18, 6, 1, 12, 42, 44, 7, 1, 15, 75, 145, 95, 13, 1, 18, 117, 336, 420, 192, 18, 1, 21, 168, 644, 1225, 1085, 371, 31, 1, 24, 228, 1096, 2834, 3880, 2588, 696, 47, 1, 27, 297, 1719, 5652, 10656, 11097, 5823, 1278, 78, 1, 30, 375, 2540, 10165, 24626, 35645, 29380, 12535, 2310, 123
3,2
Initial terms in each row match those in A061702.
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Matching-GeneratingPolynomial.html">Matching-Generating Polynomial</a>
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MoebiusLadder.html">Moebius Ladder</a>
G.f.: -((z^2*(-1 - 9*x - 18*x^2 - 6*x^3 - 2*x*z - 15*x^2*z - 20*x^3*z - x^4*z - x^2*z^2 - 5*x^3*z^2 + 4*x^4*z^2 + 6*x^5*z^2 + x^4*z^3 + 6*x^5*z^3 + 3*x^6*z^3))/((1 + x*z)*(1 - z - 2*x*z - x*z^2 + x^3*z^3))).
Writing t(n, x) = sum(k=0..n) x^k*T(n, k), t(n, x) == (1 + x)*t(n-1, x) + 2*x*(1 + x)*t(n-2, x) -(-1 + x)*x^2*t(n-3, x) -x^4*t(n-4, x).
As polynomials sum(k=0..n) x^k*T(n, k):
1 + 9*x + 18*x^2 + 6*x^3,
1 + 12*x + 42*x^2 + 44*x^3 + 7*x^4,
1 + 15*x + 75*x^2 + 145*x^3 + 95*x^4 + 13*x^5,
1 + 18*x + 117*x^2 + 336*x^3 + 420*x^4 + 192*x^5 + 18*x^6,
...
CoefficientList[LinearRecurrence[{1 + x, 2 x (1 + x), -(-1 + x) x^2, -x^4}, {1 + 3 x, 1 + 6 x + 3 x^2, 1 + 9 x + 18 x^2 + 6 x^3, 1 + 12 x + 42 x^2 + 44 x^3 + 7 x^4}, {3, 10}], x] // Flatten
CoefficientList[CoefficientList[Series[-((-1 - 9 x - 18 x^2 - 6 x^3 - 2 x z - 15 x^2 z - 20 x^3 z - x^4 z - x^2 z^2 - 5 x^3 z^2 + 4 x^4 z^2 + 6 x^5 z^2 + x^4 z^3 + 6 x^5 z^3 + 3 x^6 z^3)/((1 + x z) (1 - z - 2 x z - x z^2 + x^3 z^3))), {z, 0, 10}], z], x] // Flatten
Cf. A061702.
allocated
nonn,tabl
Eric W. Weisstein, Apr 03 2018
approved
editing
allocated for Eric W. Weisstein
allocated
approved