[go: up one dir, main page]

login
Revision History for A302232 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangle T(n,k) of the numbers of k-matchings in the n-Moebius ladder (0 <= k <= n, n > 2)
(history; published version)
#9 by Alois P. Heinz at Fri Apr 06 17:14:35 EDT 2018
STATUS

editing

approved

#8 by Omar E. Pol at Fri Apr 06 15:12:17 EDT 2018
STATUS

proposed

editing

Discussion
Fri Apr 06
17:14
Alois P. Heinz: ...
#7 by Andrew Howroyd at Fri Apr 06 14:37:06 EDT 2018
STATUS

editing

proposed

Discussion
Fri Apr 06
15:12
Omar E. Pol: Please, sign your comment.
#6 by Andrew Howroyd at Fri Apr 06 14:14:13 EDT 2018
CROSSREFS

Row sums of are A020877.

#5 by Andrew Howroyd at Fri Apr 06 14:13:44 EDT 2018
CROSSREFS

Row sums of A020877.

STATUS

approved

editing

#4 by Susanna Cuyler at Tue Apr 03 15:10:02 EDT 2018
STATUS

proposed

approved

#3 by Eric W. Weisstein at Tue Apr 03 12:36:00 EDT 2018
STATUS

editing

proposed

#2 by Eric W. Weisstein at Tue Apr 03 12:35:57 EDT 2018
NAME

allocated for Eric W. Weisstein

Triangle T(n,k) of the numbers of k-matchings in the n-Moebius ladder (0 <= k <= n, n > 2)

DATA

1, 9, 18, 6, 1, 12, 42, 44, 7, 1, 15, 75, 145, 95, 13, 1, 18, 117, 336, 420, 192, 18, 1, 21, 168, 644, 1225, 1085, 371, 31, 1, 24, 228, 1096, 2834, 3880, 2588, 696, 47, 1, 27, 297, 1719, 5652, 10656, 11097, 5823, 1278, 78, 1, 30, 375, 2540, 10165, 24626, 35645, 29380, 12535, 2310, 123

OFFSET

3,2

COMMENTS

Initial terms in each row match those in A061702.

LINKS

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Matching-GeneratingPolynomial.html">Matching-Generating Polynomial</a>

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MoebiusLadder.html">Moebius Ladder</a>

FORMULA

G.f.: -((z^2*(-1 - 9*x - 18*x^2 - 6*x^3 - 2*x*z - 15*x^2*z - 20*x^3*z - x^4*z - x^2*z^2 - 5*x^3*z^2 + 4*x^4*z^2 + 6*x^5*z^2 + x^4*z^3 + 6*x^5*z^3 + 3*x^6*z^3))/((1 + x*z)*(1 - z - 2*x*z - x*z^2 + x^3*z^3))).

Writing t(n, x) = sum(k=0..n) x^k*T(n, k), t(n, x) == (1 + x)*t(n-1, x) + 2*x*(1 + x)*t(n-2, x) -(-1 + x)*x^2*t(n-3, x) -x^4*t(n-4, x).

EXAMPLE

As polynomials sum(k=0..n) x^k*T(n, k):

1 + 9*x + 18*x^2 + 6*x^3,

1 + 12*x + 42*x^2 + 44*x^3 + 7*x^4,

1 + 15*x + 75*x^2 + 145*x^3 + 95*x^4 + 13*x^5,

1 + 18*x + 117*x^2 + 336*x^3 + 420*x^4 + 192*x^5 + 18*x^6,

...

MATHEMATICA

CoefficientList[LinearRecurrence[{1 + x, 2 x (1 + x), -(-1 + x) x^2, -x^4}, {1 + 3 x, 1 + 6 x + 3 x^2, 1 + 9 x + 18 x^2 + 6 x^3, 1 + 12 x + 42 x^2 + 44 x^3 + 7 x^4}, {3, 10}], x] // Flatten

CoefficientList[CoefficientList[Series[-((-1 - 9 x - 18 x^2 - 6 x^3 - 2 x z - 15 x^2 z - 20 x^3 z - x^4 z - x^2 z^2 - 5 x^3 z^2 + 4 x^4 z^2 + 6 x^5 z^2 + x^4 z^3 + 6 x^5 z^3 + 3 x^6 z^3)/((1 + x z) (1 - z - 2 x z - x z^2 + x^3 z^3))), {z, 0, 10}], z], x] // Flatten

CROSSREFS

Cf. A061702.

KEYWORD

allocated

nonn,tabl

AUTHOR

Eric W. Weisstein, Apr 03 2018

STATUS

approved

editing

#1 by Eric W. Weisstein at Tue Apr 03 12:35:57 EDT 2018
NAME

allocated for Eric W. Weisstein

KEYWORD

allocated

STATUS

approved