[go: up one dir, main page]

login
Revision History for A299010 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
(history; published version)
#4 by R. H. Hardin at Wed Jan 31 09:35:12 EST 2018
STATUS

editing

approved

#3 by R. H. Hardin at Wed Jan 31 09:35:09 EST 2018
LINKS

R. H. Hardin, <a href="/A299010/b299010.txt">Table of n, a(n) for n = 1..210</a>

#2 by R. H. Hardin at Wed Jan 31 09:34:50 EST 2018
NAME

allocated for R. H. Hardin

Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 4, 5 or 6 king-move adjacent elements, with upper left element zero.

DATA

4, 13, 20, 44, 123, 343, 957, 2710, 7749, 22170, 63434, 181941, 521609, 1495695, 4290128, 12304541, 35291808, 101228002, 290349737, 832808429, 2388749945, 6851656946, 19652642153, 56369797674, 161685824712, 463764471339

OFFSET

1,1

COMMENTS

Column 3 of A299015.

FORMULA

Empirical: a(n) = 4*a(n-1) -3*a(n-2) +5*a(n-3) -22*a(n-4) +14*a(n-5) -a(n-6) +24*a(n-7) -a(n-8) -38*a(n-9) +61*a(n-10) -84*a(n-11) +77*a(n-12) -89*a(n-13) +54*a(n-14) -20*a(n-15) +24*a(n-16) for n>17

EXAMPLE

Some solutions for n=5

..0..1..0. .0..1..0. .0..1..0. .0..0..1. .0..0..0. .0..1..0. .0..0..1

..1..0..0. .0..1..0. .1..0..0. .1..1..0. .0..1..0. .1..0..0. .1..0..1

..1..0..0. .0..1..0. .0..0..0. .0..1..1. .0..0..0. .0..0..0. .0..0..1

..1..0..1. .0..1..0. .0..0..1. .1..1..1. .1..1..1. .0..0..1. .0..0..0

..1..0..0. .0..1..0. .0..1..0. .0..0..1. .1..0..1. .1..0..1. .0..1..1

CROSSREFS

Cf. A299015.

KEYWORD

allocated

nonn

AUTHOR

R. H. Hardin, Jan 31 2018

STATUS

approved

editing

#1 by R. H. Hardin at Wed Jan 31 09:33:32 EST 2018
NAME

allocated for R. H. Hardin

KEYWORD

allocated

STATUS

approved