[go: up one dir, main page]

login
Revision History for A296464 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Expansion of e.g.f. arcsin(arcsin(x)) (odd powers only).
(history; published version)
#7 by Susanna Cuyler at Wed Dec 13 18:36:40 EST 2017
STATUS

proposed

approved

#6 by Vaclav Kotesovec at Wed Dec 13 16:33:45 EST 2017
STATUS

editing

proposed

#5 by Vaclav Kotesovec at Wed Dec 13 16:33:38 EST 2017
FORMULA

a(n) ~ sqrt(2) * (2*n)! / (sqrt(Pi*sin(2)*n) * sin(1)^(2*n)). - Vaclav Kotesovec, Dec 13 2017

STATUS

proposed

editing

#4 by Ilya Gutkovskiy at Wed Dec 13 13:12:13 EST 2017
STATUS

editing

proposed

#3 by Ilya Gutkovskiy at Wed Dec 13 12:37:09 EST 2017
CROSSREFS
#2 by Ilya Gutkovskiy at Wed Dec 13 12:24:42 EST 2017
NAME

allocated for Ilya GutkovskiyExpansion of e.g.f. arcsin(arcsin(x)) (odd powers only).

DATA

1, 2, 28, 1024, 71632, 8192736, 1392793920, 330041217024, 104069101383936, 42159457593506304, 21346870862961183744, 13213529766600134344704, 9818417126704155249954816, 8625630408510010165396070400, 8844234850947343105068735283200, 10467364426053362392901751845683200

OFFSET

0,2

FORMULA

E.g.f.: arcsinh(arcsinh(x)) (odd powers only, absolute values).

E.g.f.: -i*log(log(i*x + sqrt(1 - x^2)) + sqrt(1 + log(i*x + sqrt(1 - x^2))^2)), where i is the imaginary unit (odd powers only).

EXAMPLE

arcsin(arcsin(x)) = x/1! + 2*x^3/3! + 28*x^5/5! + 1024*x^7/7! + 71632*x^9/9! + ...

MATHEMATICA

nmax = 16; Table[(CoefficientList[Series[ArcSin[ArcSin[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]

nmax = 16; Table[(CoefficientList[Series[-I Log[Log[I x + Sqrt[1 - x^2]] + Sqrt[1 + Log[I x + Sqrt[1 - x^2]]^2]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Ilya Gutkovskiy, Dec 13 2017

STATUS

approved

editing

#1 by Ilya Gutkovskiy at Wed Dec 13 12:24:42 EST 2017
NAME

allocated for Ilya Gutkovskiy

KEYWORD

allocated

STATUS

approved