[go: up one dir, main page]

login
Revision History for A292904 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Decimal expansion of Product_{k>=1} (1 + exp(-5*Pi*k)).
(history; published version)
#12 by Michael De Vlieger at Fri Oct 27 13:10:07 EDT 2023
STATUS

reviewed

approved

#11 by Joerg Arndt at Fri Oct 27 12:18:24 EDT 2023
STATUS

proposed

reviewed

Discussion
Fri Oct 27
12:19
Joerg Arndt: btw. you have two super duper old edits!
#10 by Charles R Greathouse IV at Fri Oct 27 10:45:36 EDT 2023
STATUS

editing

proposed

Discussion
Fri Oct 27
12:18
Joerg Arndt: Equals exp(5*Pi/24) * t where the minimal polynomial of t may be 16*x^32 - 35312*x^24 + 204*x^16 - 188*x^8 + 1
#9 by Charles R Greathouse IV at Fri Oct 27 10:43:35 EDT 2023
LINKS

<a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

STATUS

approved

editing

Discussion
Fri Oct 27
10:45
Charles R Greathouse IV: There is an algebraic expression relating exp(25*Pi/24) and this constant; if this constant were algebraic, then exp(25*Pi/24) would be too.
#8 by Vaclav Kotesovec at Sat May 13 04:47:35 EDT 2023
STATUS

editing

approved

#7 by Vaclav Kotesovec at Sat May 13 04:47:17 EDT 2023
FORMULA

Equals exp(5*Pi/24) * sqrt(2 + sqrt(5) - sqrt((15 + 7*sqrt(5))/2))/2^(1/8). - Vaclav Kotesovec, May 13 2023

MATHEMATICA

RealDigits[Exp[5*Pi/24]*Sqrt[2 + Sqrt[5] - Sqrt[(15 + 7*Sqrt[5])/2]]/2^(1/8), 10, 120][[1]] (* Vaclav Kotesovec, May 13 2023 *)

STATUS

approved

editing

#6 by Charles R Greathouse IV at Sun Mar 04 04:39:39 EST 2018
STATUS

editing

approved

#5 by Charles R Greathouse IV at Sun Mar 04 04:39:36 EST 2018
PROG

(PARI) polrootsreal(2^(3/4)*'x^6 + 2^(17/8)*exp(5*Pi/24)*'x^5 + 2^(5/8)*exp(25*Pi/24)*'x - exp(5*Pi/4))[2] \\ Charles R Greathouse IV, Mar 04 2018

STATUS

approved

editing

#4 by Vaclav Kotesovec at Tue Sep 26 11:50:58 EDT 2017
STATUS

editing

approved

#3 by Vaclav Kotesovec at Tue Sep 26 10:41:48 EDT 2017
NAME

allocated for Vaclav KotesovecDecimal expansion of Product_{k>=1} (1 + exp(-5*Pi*k)).

DATA

1, 0, 0, 0, 0, 0, 0, 1, 5, 0, 7, 0, 1, 7, 5, 0, 2, 5, 0, 0, 2, 3, 9, 8, 9, 4, 9, 3, 8, 6, 9, 8, 7, 1, 4, 6, 7, 9, 7, 3, 7, 6, 1, 0, 0, 6, 4, 3, 0, 5, 0, 7, 4, 0, 5, 6, 9, 0, 1, 9, 9, 9, 8, 8, 5, 2, 0, 8, 8, 7, 1, 3, 4, 4, 2, 6, 9, 4, 9, 7, 1, 7, 6, 1, 8, 7, 2, 8, 7, 4, 6, 7, 3, 2, 5, 8, 5, 1, 0, 0, 2, 8, 5, 0, 4

OFFSET

1,9

LINKS

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DedekindEtaFunction.html">Dedekind Eta Function</a>

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/q-PochhammerSymbol.html">q-Pochhammer Symbol</a>

Wikipedia, <a href="https://en.wikipedia.org/wiki/Dedekind_eta_function">Dedekind eta function</a>

Wikipedia, <a href="https://en.wikipedia.org/wiki/Euler_function">Euler function</a>

FORMULA

Root r of the equation 2^(3/4)*r^6 + 2^(17/8)*exp(5*Pi/24)*r^5 + 2^(5/8)*exp(25*Pi/24)*r - exp(5*Pi/4) = 0.

EXAMPLE

1.000000150701750250023989493869871467973761006430507405690199988520887...

MATHEMATICA

RealDigits[r/.FindRoot[2^(3/4)*r^6 + 2^(17/8)*E^(5*Pi/24)*r^5 + 2^(5/8)*E^(25*Pi/24)*r - E^(5*Pi/4) == 0, {r, 1}, WorkingPrecision -> 120], 10, 120][[1]]

RealDigits[QPochhammer[-1, E^(-5*Pi)]/2, 10, 120][[1]]

KEYWORD

allocated

nonn,cons

AUTHOR

Vaclav Kotesovec, Sep 26 2017

STATUS

approved

editing