[go: up one dir, main page]

login
Revision History for A286943 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 233", based on the 5-celled von Neumann neighborhood.
(history; published version)
#14 by N. J. A. Sloane at Wed May 17 17:52:20 EDT 2017
STATUS

proposed

approved

#13 by Robert Price at Wed May 17 13:55:00 EDT 2017
STATUS

editing

proposed

#12 by Robert Price at Wed May 17 13:54:56 EDT 2017
CROSSREFS
#11 by Robert Price at Wed May 17 13:51:16 EDT 2017
LINKS

Robert Price, <a href="/A286943/a286943.tmp.txt">Diagrams of first 20 stages</a>

Robert Price, <a href="/A286943/a286943.tmp.txt">Diagrams of first 20 stages</a>

#10 by Robert Price at Wed May 17 13:51:03 EDT 2017
LINKS

Robert Price, <a href="/A286943/b286943.txt">Table of n, a(n) for n = 0..126</a>

Robert Price, <a href="/A286943/a286943.tmp.txt">Diagrams of first 20 stages</a>

#9 by Robert Price at Wed May 17 13:50:45 EDT 2017
NAME

allocated for Robert PriceBinary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 233", based on the 5-celled von Neumann neighborhood.

DATA

1, 1, 110, 111, 10100, 111, 11000, 10101111, 10000, 11111, 10001100000, 11111111, 1000001000000, 1101111111, 100000110000000, 110011111111, 10000011100000000, 11110111111111, 1000000011000000000, 1111001111111111, 100000010110000000000, 1101011111111111

OFFSET

0,3

COMMENTS

Initialized with a single black (ON) cell at stage zero.

REFERENCES

S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

LINKS

N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>

<a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

<a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>

<a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

MATHEMATICA

CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];

code = 233; stages = 128;

rule = IntegerDigits[code, 2, 10];

g = 2 * stages + 1; (* Maximum size of grid *)

a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)

ca = a;

ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];

PrependTo[ca, a];

(* Trim full grid to reflect growth by one cell at each stage *)

k = (Length[ca[[1]]] + 1)/2;

ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];

Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

KEYWORD

allocated

nonn,easy

AUTHOR

Robert Price, May 17 2017

STATUS

approved

editing

#8 by Robert Price at Wed May 17 13:50:45 EDT 2017
NAME

allocated for Robert Price

KEYWORD

recycled

allocated

#7 by N. J. A. Sloane at Wed May 17 13:49:55 EDT 2017
STATUS

editing

approved

#6 by N. J. A. Sloane at Wed May 17 13:49:53 EDT 2017
NAME

Triangle read by rows: T(n, k) is the number of n-vertex simple graphs with k edges.

DATA

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 4, 6, 6, 6, 4, 2, 1, 1, 1, 1, 2, 5, 9, 15, 21, 24, 24, 21, 15, 9, 5, 2, 1, 1, 1, 1, 2, 5, 10, 21, 41, 65, 97, 131, 148, 148, 131, 97, 65, 41, 21, 10, 5, 2, 1, 1, 1, 1, 2, 5, 11, 24, 56, 115, 221, 402, 663, 980, 1312, 1557, 1646, 1557, 1312, 980, 663, 402, 221, 115, 56, 24, 11, 5, 2, 1, 1

OFFSET

1,10

COMMENTS

Equivalently, nth row gives coefficients of the nth graph polynomial.

LINKS

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphEdge.html">Graph Edge</a>

EXAMPLE

Triangle begins:

1;

1, 1;

1, 1, 1, 1;

1, 1, 2, 3, 2, 1, 1;

1, 1, 2, 4, 6, 6, 6, 4, 2, 1, 1;

MATHEMATICA

<<Combinatorica`; CoefficientList[Table[GraphPolynomial[n, x], {n, 10}], x] (* Eric W. Weisstein, May 16 2017 *)

CROSSREFS

nth row sums to A000088(n).

Sum k*T(n, k) gives A086314(n).

KEYWORD

dead

recycled

AUTHOR

Eric W. Weisstein, May 16 2017

STATUS

proposed

editing

#5 by Eric W. Weisstein at Wed May 17 06:41:26 EDT 2017
STATUS

editing

proposed