[go: up one dir, main page]

login
Revision History for A284261 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
#15 by Joerg Arndt at Fri Dec 15 13:02:34 EST 2017
STATUS

reviewed

approved

#14 by Michel Marcus at Fri Dec 15 12:43:27 EST 2017
STATUS

proposed

reviewed

#13 by Antti Karttunen at Fri Dec 15 12:34:32 EST 2017
STATUS

editing

proposed

#12 by Antti Karttunen at Fri Dec 15 12:34:21 EST 2017
OFFSET

1,50429

EXTENSIONS

Secondary offset corrected by Antti Karttunen, Dec 15 2017

STATUS

approved

editing

#11 by OEIS Server at Fri Mar 24 21:59:31 EDT 2017
LINKS

Antti Karttunen, <a href="/A284261/b284261_1.txt">Table of n, a(n) for n = 1..10001</a>

#10 by N. J. A. Sloane at Fri Mar 24 21:59:31 EDT 2017
STATUS

proposed

approved

Discussion
Fri Mar 24
21:59
OEIS Server: Installed new b-file as b284261.txt.  Old b-file is now b284261_1.txt.
#9 by Michael De Vlieger at Fri Mar 24 15:46:56 EDT 2017
STATUS

editing

proposed

#8 by Michael De Vlieger at Fri Mar 24 15:46:53 EDT 2017
MATHEMATICA

Table[If[n == 1, 0, Subtract @@ Map[Count[#, d_ /; d > First[#]^2] &@ FactorInteger[#][[All, 1]] &, {n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[n == 1]}]], {n, 120}] (* _Michael De Vlieger_, Mar 24 2017 *)

FactorInteger[#][[All, 1]] &, {n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[n == 1]}]], {n, 120}] (* Michael De Vlieger, Mar 24 2017 *)

#7 by Michael De Vlieger at Fri Mar 24 15:46:39 EDT 2017
MATHEMATICA

Table[If[n == 1, 0, Subtract @@ Map[Count[#, d_ /; d > First[#]^2] &@

FactorInteger[#][[All, 1]] &, {n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[n == 1]}]], {n, 120}] (* Michael De Vlieger, Mar 24 2017 *)

STATUS

proposed

editing

#6 by Antti Karttunen at Fri Mar 24 08:00:37 EDT 2017
STATUS

editing

proposed

Discussion
Fri Mar 24
08:03
Antti Karttunen: 120 one-digit terms, thus about ~360 chars, might be useful as a filtering-sequence.