editing
approved
editing
approved
R. H. Hardin, <a href="/A279856/b279856.txt">Table of n, a(n) for n = 1..112</a>
allocated for R. H. Hardin
T(n,k)=Number of nXk 0..2 arrays with no element unequal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
0, 0, 0, 2, 4, 2, 2, 10, 10, 2, 8, 24, 49, 24, 8, 14, 54, 168, 168, 54, 14, 36, 116, 557, 972, 557, 116, 36, 74, 250, 1758, 5200, 5200, 1758, 250, 74, 168, 528, 5441, 26632, 44893, 26632, 5441, 528, 168, 358, 1118, 16500, 134898, 373516, 373516, 134898, 16500
1,4
Table starts
...0....0......2........2..........8..........14..........36..........74
...0....4.....10.......24.........54.........116.........250.........528
...2...10.....49......168........557........1758........5441.......16500
...2...24....168......972.......5200.......26632......134898......668668
...8...54....557.....5200......44893......373516.....3010179....23836450
..14..116...1758....26632.....373516.....4989784....64921744...827573664
..36..250...5441...134898....3010179....64921744..1356293555.27796618392
..74..528..16500...668668...23836450...827573664.27796618392
.168.1118..49253..3278294..185854745.10392951988
.358.2348.145290.15902088.1432781380
Empirical for column k:
k=1: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) -4*a(n-4) for n>5
k=2: a(n) = 3*a(n-1) +a(n-2) -7*a(n-3) +4*a(n-5)
k=3: a(n) = 4*a(n-1) -2*a(n-2) -9*a(n-4) -4*a(n-5) -4*a(n-6) for n>9
k=4: [order 38] for n>41
Some solutions for n=4 k=4
..0..1..1..1. .0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..1
..0..1..1..1. .0..0..1..1. .0..0..0..1. .1..1..0..1. .0..0..0..1
..2..2..1..1. .0..2..2..1. .2..0..0..1. .1..1..0..0. .0..0..0..1
..2..2..2..2. .0..2..2..1. .0..0..0..1. .0..0..0..0. .0..0..1..1
Column 1 is A219754(n+1)*2.
allocated
nonn,tabl
R. H. Hardin, Dec 20 2016
approved
editing
allocated for R. H. Hardin
allocated
approved