[go: up one dir, main page]

login
Revision History for A279614 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(1)=1, a(d(x_1)*..*d(x_k)) = 1+a(x_1)+..+a(x_k) where d(n) = n-th Fermi-Dirac prime.
(history; published version)
#9 by N. J. A. Sloane at Thu Dec 15 23:36:06 EST 2016
STATUS

proposed

approved

#8 by Gus Wiseman at Thu Dec 15 22:52:34 EST 2016
STATUS

editing

proposed

#7 by Gus Wiseman at Thu Dec 15 22:51:48 EST 2016
NAME

a(1)=1, a(d(x_1)*..*d(x_k)) = 1+a(x_1)+..+a(x_k) where d(n) = n-th Dirac-Fermi -Dirac prime.

COMMENTS

A Dirac-Fermi -Dirac prime (A050376) is a positive integer of the form p^(2^k) where p is prime and k>=0.

STATUS

proposed

editing

Discussion
Thu Dec 15
22:52
Gus Wiseman: Fixed ordering (Fermi-Dirac not Dirac-Fermi).
#6 by Gus Wiseman at Thu Dec 15 21:39:55 EST 2016
STATUS

editing

proposed

#5 by Gus Wiseman at Thu Dec 15 21:37:53 EST 2016
FORMULA

Number of appearances of n is |a^{-1}(n)| = A004111(n).

#4 by Gus Wiseman at Thu Dec 15 21:33:53 EST 2016
#3 by Gus Wiseman at Thu Dec 15 21:32:17 EST 2016
#2 by Gus Wiseman at Thu Dec 15 21:25:04 EST 2016
NAME

allocated for Gus Wisemana(1)=1, a(d(x_1)*..*d(x_k)) = 1+a(x_1)+..+a(x_k) where d(n) = n-th Dirac-Fermi prime.

DATA

1, 2, 3, 4, 5, 4, 6, 5, 5, 6, 7, 6, 6, 7, 7, 6, 7, 6, 8, 8, 8, 8, 7, 7, 7, 7, 7, 9, 8, 8, 8, 7, 9, 8, 10, 8, 7, 9, 8, 9, 8, 9, 7, 10, 9, 8, 9, 8, 9, 8, 9, 9, 9, 8, 11, 10, 10, 9, 9, 10, 8, 9, 10, 9, 10, 10, 8, 10, 9, 11, 8, 9, 8, 8, 9, 11, 12, 9, 8, 10, 10, 9

OFFSET

1,2

COMMENTS

A Dirac-Fermi prime (A050376) is a positive integer of the form p^(2^k) where p is prime and k>=0.

In analogy with the Matula-Goebel correspondence between rooted trees and positive integers (see A061775), the iterated normalized Fermi-Dirac representation gives a correspondence between rooted identity trees and positive integers. Then a(n) is the number of nodes in the rooted identity tree corresponding to n.

LINKS

OEIS Wiki, <a href="/wiki/%22Fermi-Dirac_representation%22_of_n">"Fermi-Dirac representation" of n</a>

EXAMPLE

Sequence of rooted identity trees represented as finitary sets begins:

{}, {{}}, {{{}}}, {{{{}}}}, {{{{{}}}}}, {{}{{}}}, {{{{{{}}}}}},

{{}{{{}}}}, {{{}{{}}}}, {{}{{{{}}}}}, {{{{{{{}}}}}}}, {{{}}{{{}}}},

{{{}{{{}}}}}, {{}{{{{{}}}}}}, {{{}}{{{{}}}}}, {{{{}{{}}}}},

{{{}{{{{}}}}}}, {{}{{}{{}}}}, {{{{{{{{}}}}}}}}, {{{{}}}{{{{}}}}},

{{{}}{{{{{}}}}}}, {{}{{{{{{}}}}}}}, {{{{}}{{{}}}}}, {{}{{}}{{{}}}}.

MATHEMATICA

nn=200;

FDfactor[n_]:=If[n===1, {}, Sort[Join@@Cases[FactorInteger[n], {p_, k_}:>Power[p, Cases[Position[IntegerDigits[k, 2]//Reverse, 1], {m_}->2^(m-1)]]]]];

FDprimeList=Array[FDfactor, nn, 1, Union];

FDweight[n_?(#<=nn&)]:=If[n===1, 1, 1+Total[FDweight[Position[FDprimeList, #][[1, 1]]]&/@FDfactor[n]]];

Array[FDweight, nn]

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Gus Wiseman, Dec 15 2016

STATUS

approved

editing

#1 by Gus Wiseman at Thu Dec 15 21:25:04 EST 2016
NAME

allocated for Gus Wiseman

KEYWORD

allocated

STATUS

approved