[go: up one dir, main page]

login
Revision History for A279396 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangle read by rows T(n, m) = sigma^*_(n-m)(m), n >= 1, m = 1, 2, ..., n, with sigma^*_(k)(n) given in a comment in A279395.
(history; published version)
#7 by Wolfdieter Lang at Tue Jan 10 15:51:59 EST 2017
STATUS

editing

approved

#6 by Wolfdieter Lang at Tue Jan 10 15:51:52 EST 2017
NAME

Triangle read by rows T(n, m) = sigma^*_(n-m)(m), n >= 1, m = 1, 2, ..., n, with sigma^*_(k)(n) given in a comment ofin A279395.

STATUS

approved

editing

#5 by N. J. A. Sloane at Tue Jan 10 07:14:09 EST 2017
STATUS

proposed

approved

#4 by Wolfdieter Lang at Tue Jan 10 07:09:52 EST 2017
STATUS

editing

proposed

#3 by Wolfdieter Lang at Tue Jan 10 07:09:29 EST 2017
COMMENTS

The diagonals of triangle T are the rows of the array A. Each diagonal is multiplicative. See the given A-numbers above.

The column sums (with offset 0) are A000012, A000225, A034472, A099393, A034474, .. with o.g.f. G(m, z) = (-1)^m*Sum_{d | m} (-1)^d/(1 - d*z), m >= 1.

FORMULA

O.g.f triangle T: G(z, x) = Sum_{m>=0}

G(m, z)*(x*z)^m, with the column o.g.f. G( m, z) (with offset 0) given in a comment above.

#2 by Wolfdieter Lang at Tue Jan 10 06:13:59 EST 2017
NAME

allocated for Wolfdieter LangTriangle read by rows T(n, m) = sigma^*_(n-m)(m), n >=1, m=1,2,...,n, with sigma^*_(k)(n) given in a comment of

DATA

1, 1, 0, 1, 1, 2, 1, 3, 4, 1, 1, 7, 10, 5, 2, 1, 15, 28, 19, 6, 0, 1, 31, 82, 71, 26, 4, 2, 1, 63, 244, 271, 126, 30, 8, 2, 1, 127, 730, 1055, 626, 196, 50, 13, 3, 1, 255, 2188, 4159, 3126, 1230, 344, 83, 13, 0, 1, 511, 6562, 16511, 15626, 7564, 2402, 583, 91, 6, 2, 1, 1023, 19684, 65791, 78126, 45990, 16808, 4367, 757, 78, 12, 2

OFFSET

1,6

COMMENTS

The array A(k, n) = sigma^*_(k)(n) (notation of the Hardy reference, given also in a comment in A279395) = Sum_{ d >= 1, d divides n} (-1)^(n-d)*d^k, for k >= 0 and n >=1, has the rows A112329, A113184, A064027, A008457, A279395, for k=0..4.

The triangle T(n, m) is obtained from the array A(k, n) read by upwards antidiagonals, with offset n=1.

The row sums are given in A279397.

REFERENCES

G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 142.

FORMULA

T(n, m) = Sum_{ d >= 1, d divides m} (-1)^(m-d)*d^(n-m) = sigma^*_(n-m)(m), n >= 1, m = 1,2, ..., n. For the definition of

sigma^*_(k)(n) see the Hardy reference or a comment in A279395.

EXAMPLE

The triangle T(n, m) begins:

n\m 1 2 3 4 5 6 7 8 9 10

1: 1

2: 1 0

3: 1 1 2

4: 1 3 4 1

5: 1 7 10 5 2

6: 1 15 28 19 6 0

7: 1 31 82 71 26 4 2

8: 1 63 244 271 126 30 8 2

9: 1 127 730 1055 626 196 50 13 3

10: 1 255 2188 4159 3126 1230 344 83 13 0

...

n = 11: 1 511 6562 16511 15626 7564 2402 583 91 6 2,

n = 12: 1 1023 19684 65791 78126 45990 16808 4367 757 78 12 2.

n = 13: 1 2047 59050 262655 390626 277876 117650 33823 6643 882 122 20 2,

n = 14: 1 4095 177148 1049599 1953126 1673310 823544 266303 59293 9390 1332 190 14 0,

n = 15: 1 8191 531442 4196351 9765626 10058524 5764802 2113663 532171 96906 14642 1988 170 8 4.

...

KEYWORD

allocated

nonn,tabl,easy

AUTHOR

Wolfdieter Lang, Jan 10 2017

STATUS

approved

editing

#1 by Wolfdieter Lang at Sun Dec 11 12:02:36 EST 2016
NAME

allocated for Wolfdieter Lang

KEYWORD

allocated

STATUS

approved