editing
approved
editing
approved
Triangle read by rows T(n, m) = sigma^*_(n-m)(m), n >= 1, m = 1, 2, ..., n, with sigma^*_(k)(n) given in a comment ofin A279395.
approved
editing
proposed
approved
editing
proposed
O.g.f triangle T: G(z, x) = Sum_{m>=0}
G(m, z)*(x*z)^m, with the column o.g.f. G( m, z) (with offset 0) given in a comment above.
allocated for Wolfdieter LangTriangle read by rows T(n, m) = sigma^*_(n-m)(m), n >=1, m=1,2,...,n, with sigma^*_(k)(n) given in a comment of
1, 1, 0, 1, 1, 2, 1, 3, 4, 1, 1, 7, 10, 5, 2, 1, 15, 28, 19, 6, 0, 1, 31, 82, 71, 26, 4, 2, 1, 63, 244, 271, 126, 30, 8, 2, 1, 127, 730, 1055, 626, 196, 50, 13, 3, 1, 255, 2188, 4159, 3126, 1230, 344, 83, 13, 0, 1, 511, 6562, 16511, 15626, 7564, 2402, 583, 91, 6, 2, 1, 1023, 19684, 65791, 78126, 45990, 16808, 4367, 757, 78, 12, 2
1,6
The array A(k, n) = sigma^*_(k)(n) (notation of the Hardy reference, given also in a comment in A279395) = Sum_{ d >= 1, d divides n} (-1)^(n-d)*d^k, for k >= 0 and n >=1, has the rows A112329, A113184, A064027, A008457, A279395, for k=0..4.
The triangle T(n, m) is obtained from the array A(k, n) read by upwards antidiagonals, with offset n=1.
The row sums are given in A279397.
G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 142.
T(n, m) = Sum_{ d >= 1, d divides m} (-1)^(m-d)*d^(n-m) = sigma^*_(n-m)(m), n >= 1, m = 1,2, ..., n. For the definition of
sigma^*_(k)(n) see the Hardy reference or a comment in A279395.
The triangle T(n, m) begins:
n\m 1 2 3 4 5 6 7 8 9 10
1: 1
2: 1 0
3: 1 1 2
4: 1 3 4 1
5: 1 7 10 5 2
6: 1 15 28 19 6 0
7: 1 31 82 71 26 4 2
8: 1 63 244 271 126 30 8 2
9: 1 127 730 1055 626 196 50 13 3
10: 1 255 2188 4159 3126 1230 344 83 13 0
...
n = 11: 1 511 6562 16511 15626 7564 2402 583 91 6 2,
n = 12: 1 1023 19684 65791 78126 45990 16808 4367 757 78 12 2.
n = 13: 1 2047 59050 262655 390626 277876 117650 33823 6643 882 122 20 2,
n = 14: 1 4095 177148 1049599 1953126 1673310 823544 266303 59293 9390 1332 190 14 0,
n = 15: 1 8191 531442 4196351 9765626 10058524 5764802 2113663 532171 96906 14642 1988 170 8 4.
...
allocated
nonn,tabl,easy
Wolfdieter Lang, Jan 10 2017
approved
editing
allocated for Wolfdieter Lang
allocated
approved