editing
approved
editing
approved
Number of odd prime factors (with multiplicity) of generalized Fermat number of the form 11^(2^n) + 1, n >= 0.
proposed
editing
editing
proposed
b(n) = (11^(2^n) + 1)/2.
Complete Factorizations
b(0) = 2*3
b(1) = 61
b(2) = 7321
b(3) = 17*6304673
b(4) = 51329*447600088289
b(5) = 193*257*21283620033217629539178799361
b(6) = 316955440822738177*P49
b(7) = 15361*111489577217*574341646346402207998363393*
4018529583345312964042058778793458689*P55
b(8) = 15190529*4696846849*19618834249745000485889*
4393553986026616439660661873903822389581313*
290103547098489711747952055517085778590240759297*P138
b(n) = (11^(2^n) + 1)/2.
Complete Factorizations
b(0) = 2.3
b(1) = 61
b(2) = 7321
b(3) = 17.6304673
b(4) = 51329.447600088289
b(5) = 193.257.21283620033217629539178799361
b(6) = 316955440822738177.P49
b(7) = 15361.111489577217.574341646346402207998363393.
4018529583345312964042058778793458689.P55
b(8) = 15190529.4696846849.19618834249745000485889.
4393553986026616439660661873903822389581313.
290103547098489711747952055517085778590240759297.P138
proposed
editing
editing
proposed
a(n) = A001222(A199592(n)) - 1 for n > 0. - Felix Fröhlich, Jul 25 2016
(PARI) a001222(n) = bigomega(n)
a199592(n) = 11^(2^n)+1
a(n) = if(n==0, 1, a001222(a199592(n))-1) \\ Felix Fröhlich, Jul 25 2016
proposed
editing
editing
proposed
Number of odd prime factors (with multiplicity) of generalized Fermat number of the form 11^(2^n) + 1, n >= 0.