[go: up one dir, main page]

login
Revision History for A275047 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Diagonal of the rational function 1/(1-(1+w)(xy + xz + yz)) [even-indexed terms only].
(history; published version)
#39 by Alois P. Heinz at Fri Oct 27 21:46:52 EDT 2023
STATUS

editing

approved

#38 by Alois P. Heinz at Fri Oct 27 21:46:49 EDT 2023
LINKS

Gheorghe Coserea and Alois P. Heinz, <a href="/A275047/b275047.txt">Table of n, a(n) for n = 0..444</a> (first 34 terms from Gheorghe Coserea)

STATUS

approved

editing

#37 by Michael De Vlieger at Fri Jun 23 07:47:05 EDT 2023
STATUS

reviewed

approved

#36 by Joerg Arndt at Fri Jun 23 07:46:25 EDT 2023
STATUS

proposed

reviewed

#35 by Peter Bala at Thu Jun 22 10:14:42 EDT 2023
STATUS

editing

proposed

#34 by Peter Bala at Thu Jun 22 10:14:37 EDT 2023
LINKS

Armin Straub, <a href="http://dx.doi.org/10.2140/ant.2014.8.1985">Multivariate Apéry numbers and supercongruences of rational functions</a>, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; <a href="https://arxiv.org/abs/1401.0854">arXiv preprint</a>, arXiv:1401.0854 [math.NT], 2014.

arXiv:1401.0854 [math.NT], 2014.

#33 by Peter Bala at Thu Jun 22 08:45:28 EDT 2023
COMMENTS

We conjecture that the sequences {a(i,n) : n >= 0}, i >= 2, also satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5, and positive integers n and r. Cf. A362725 and A362732. (End)

#32 by Peter Bala at Thu Jun 22 08:41:16 EDT 2023
COMMENTS

a(n) = A(n,n,2*n,2*n) (= A(2*n,2*n,n,n)) in the notation of Straub, equation 8, where it is shown that the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r. This also follows from Meštrović equation 39, since a(n) = binomial(3*n,n)^2 * binomial(2*n,n).

We conjecture that the sequences {a(i,n) : n >= 0}, i >= 2, also satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5, and positive integers n and r. Cf. A362725. (End)

LINKS

R. Meštrović, <a href="https://arxiv.org/abs/1111.3057">Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2012)</a>, arXiv:1111.3057 [math.NT], 2011.

Armin Straub, <a href="http://dx.doi.org/10.2140/ant.2014.8.1985">Multivariate Apéry numbers and supercongruences of rational functions</a>, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; <a href="https://arxiv.org/abs/1401.0854">arXiv preprint</a>,

arXiv:1401.0854 [math.NT], 2014.

FORMULA

From Peter Bala, Jun22 Jun 22 2023: (Start)

a(n) = binomial(3*n,n)^2 * binomial(2*n,n) = A188662(n) * A000984(n).

a(n) = [(x*y)^n * (z*t)^(2*n)] 1/((1 - x - y)*(1 - z - t) - x*y*z*t). (End)

CROSSREFS
#31 by Peter Bala at Thu Jun 22 08:23:53 EDT 2023
COMMENTS

From Peter Bala, Jun 22 2023: (Start)

a(n) = A(n,n,2*n,2*n) (= A(2*n,2*n,n,n)) in the notation of Straub, equation 8, where it is shown that the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.

Inductively define a family of sequences {a(i,n) : n >= 0}, i >= 1, by setting a(1,n) = a(n) and, for i >= 2, a(i,n) = [x^n] ( exp(Sum_{k >= 1} a(i-1,k)*x^k/k) )^n.

We conjecture that the sequences {a(i,n) : n >= 0}, i >= 2, satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5, and positive integers n and r. Cf. A362725. (End)

FORMULA

From Peter Bala, Jun22 2023: (Start)

a(n) = Sum_{k = 0..n} binomial(n,k)*binomial(2*n,k)*binomial(2*n-k,n)* binomial(4*n-k,2*n).

a(n) = [(x*y)^n*(z*t)^(2*n)] 1/((1 - x - y)*(1 - z - t) - x*y*z*t). (End)

CROSSREFS

Cf. A268545 - A268555.

STATUS

approved

editing

#30 by Andrey Zabolotskiy at Tue Nov 23 06:01:51 EST 2021
STATUS

editing

approved