proposed
approved
proposed
approved
editing
proposed
T[n_, k_] := 3^n - 2^(k+1) Binomial[n, k+1] Hypergeometric2F1[1, k-n+1, k+2, -2] - 1;
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 26 2018 *)
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
D.A. Zaitsev, A generalized neighborhood for cellular automata, Theoretical Computer Science, 666 (2017), 21-35.Dmitry Zaitsev, k-neighborhood for Cellular Automata, arXiv preprint arXiv:1605.08870, 2016.
Dmitry Zaitsev, <a href="https://arxiv.org/abs/1605.08870">k-neighborhood for Cellular Automata</a>, arXiv preprint arXiv:1605.08870 [cs.DM], 2016.
D. A. Zaitsev, <a href="https://doi.org/10.1016/j.tcs.2016.11.002">A generalized neighborhood for cellular automata</a>, Theoretical Computer Science, 666 (2017), 21-35.
proposed
editing
editing
proposed
D.A. Zaitsev D.A. , A generalized neighborhood for cellular automata, Theoretical Computer Science. vol. , 666, (2017, ), 21-35.Dmitry Zaitsev, k-neighborhood for Cellular Automata, arXiv preprint arXiv:1605.08870, 2016.
Dmitry Zaitsev, k-neighborhood for Cellular Automata, arXiv preprint arXiv:1605.08870, 2016.
Dmitry Zaitsev, k- D.A. A generalized neighborhood for Cellular Automata, arXiv preprint arXiv:1605cellular automata, Theoretical Computer Science. vol. 666, 2017, 21-35.08870, 201
Dmitry Zaitsev, k-neighborhood for Cellular Automata, arXiv preprint arXiv:1605.08870, 2016.
approved
editing