proposed
approved
proposed
approved
editing
proposed
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
b[n_] := Sum[permcount[p]*2^edges[p]*Coefficient[Product[1-x^p[[i]], {i, 1, Length[p]}], x, n-k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}]; b[0] = 1;
a[n_] := b[n] - b[n-1];
a /@ Range[0, 19] (* Jean-François Alcover, Sep 12 2019, after Andrew Howroyd in A004110 *)
approved
editing
Andrew Howroyd, <a href="/A261919/b261919_2.txt">Table of n, a(n) for n = 0..50</a> (terms 1..26 from Max Alekseyev)
reviewed
approved
proposed
reviewed
editing
proposed
Gus Wiseman, Andrew Howroyd, <a href="/A261919/b261919_2.txt">Table of n, a(n) for n = 0..50</a> (terms 1..26 from Max Alekseyev)
Andrew Howroyd, Gus Wiseman, <a href="/A261919/b261919_2.txt">Table of n, a(n) for n = 10..50</a> (terms 1..26 from Max Alekseyev)
a(0) = 1 prepended by Gus Wiseman, Aug 15 2019
1, 0, 0, 1, 3, 11, 62, 510, 7459, 197867, 9808968, 902893994, 153723380584, 48443158427276, 28363698856991892, 30996526139142442460, 63502034434187094606966, 244852545450108200518282934, 1783161611521019613186341526720, 24603891216946828886755056314074748
1,4
0,5
Euler transform of A004108, if we assume A004108(1) = 0. - Gus Wiseman, Aug 15 2019