editing
approved
editing
approved
1;
0, 1;
0, 2, 3;
0, 4, 10, 11;
0, 8, 36, 48, 49;
0, 16, 136, 236, 256, 257;
0, 32, 528, 1248, 1508, 1538, 1539;
0, 64, 2080, 6896, 9696, 10256, 10298, 10299;
..
...
1, 0, 1, 0, 2, 3, 0, 4, 10, 11, 0, 8, 36, 48, 49, 0, 16, 136, 236, 256, 257, 0, 32, 528, 1248, 1508, 1538, 1539, 0, 64, 2080, 6896, 9696, 10256, 10298, 10299, 0, 128, 8256, 39168, 66384, 74784, 75848, 75904, 75905, 0, 256, 32896, 226496, 475136, 586352, 607520, 609368, 609440, 609441
approved
editing
proposed
approved
editing
proposed
CC[t_, n_] := Sum[2^(t - m)*StirlingS2[t, m], {m, 0, n}];
Table[CC[t, n], {t, 0, 12}, {n, 0, t}] // Flatten
(* Second program: *)
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[x^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!*Sum[Binomial[i, 2*k], {k, 0, i/2}]^j*b[n - i*j, i - 1], {j, 0, n/i}]]];
T[n_] := Function[p, Table[Sum[Coefficient[p, x, j], {j, 0, i}], {i, 0, n} ] ][b[n, n]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
approved
editing
proposed
approved
editing
proposed
C_t(n) = <pi^t, 1_{BSym_n}> where pi is the permutation character of the hyperoctahedral group BSym_n = C_2 \wr wreath Sym_n given by its imprimitive action on a set of size 2n. This gives a combinatorial interpretation of C_t(n) using sequences of box moves on pairs of Young diagrams.
proposed
editing
editing
proposed