[go: up one dir, main page]

login
Revision History for A254644 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Fourth partial sums of fifth powers (A000584).
(history; published version)
#51 by Charles R Greathouse IV at Thu Sep 08 08:46:11 EDT 2022
PROG

(MAGMAMagma) [Binomial(n+4, 5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126: n in [1..30]]; // G. C. Greubel, Aug 28 2019

Discussion
Thu Sep 08
08:46
OEIS Server: https://oeis.org/edit/global/2944
#50 by Alois P. Heinz at Wed Aug 28 19:07:39 EDT 2019
STATUS

proposed

approved

#49 by G. C. Greubel at Wed Aug 28 13:59:31 EDT 2019
STATUS

editing

proposed

#48 by G. C. Greubel at Wed Aug 28 13:58:40 EDT 2019
DATA

1, 36, 381, 2336, 10326, 36552, 110022, 292512, 704847, 1567852, 3263403, 6422208, 12046268, 21675408, 37608828, 63194304, 103199469, 164281524, 255573769, 389409504, 582206130, 855534680, 1237402530, 1763779680, 2480401755, 3444885756, 4729197591, 6422513536, 8634521016, 11499207456

FORMULA

G.f.: (x *(1 + 26*x^2 + 66*x^3 2 + 26*x^4 3 + x^54)/(-1 + - x)^10.

MAPLE

seq(binomial(n+4, 5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126, n=1..30); # G. C. Greubel, Aug 28 2019

MATHEMATICA

Table[n (1 + n) (2 + n) (3 + n) (4 + n) (- 24 + 20 n 20n + 85 n85n^2 + 40 n40n^3 + 5 n5n^4)/15120, {n, 30}] (* or *) Accumulate[Accumulate[Accumulate[Accumulate[Range[24}] ^5]]]] (* or *) CoefficientList[Series[(1 +26x +66x^2 +26x^3 +x^4)/(1-x)^10, {x, 0, 30}], x]

Accumulate[Accumulate[AccumulateNest[Accumulate[, Range[2430]^5]]], 4] (* or *) LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {1, 36, 381, 2336, 10326, 36552, 110022, 292512, 704847, 1567852}, 30] (* _Harvey P. Dale_, May 08 2016 *)

CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(- 1 + x)^10, {x, 0, 24}], x]

Nest[Accumulate, Range[30]^5, 4] (* or *) LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {1, 36, 381, 2336, 10326, 36552, 110022, 292512, 704847, 1567852}, 30] (* Harvey P. Dale, May 08 2016 *)

PROG

(PARI) vector(30, n, m=n+2; binomial(m+2, 5)*(5*m^4 -35*m^2 +36)/126) \\ G. C. Greubel, Aug 28 2019

(MAGMA) [Binomial(n+4, 5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126: n in [1..30]]; // G. C. Greubel, Aug 28 2019

(Sage) [binomial(n+4, 5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126 for n in (1..30)] # G. C. Greubel, Aug 28 2019

(GAP) List([1..30], n-> Binomial(n+4, 5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126); # G. C. Greubel, Aug 28 2019

STATUS

approved

editing

#47 by Harvey P. Dale at Sun May 08 08:59:20 EDT 2016
STATUS

editing

approved

#46 by Harvey P. Dale at Sun May 08 08:59:10 EDT 2016
MATHEMATICA

Nest[Accumulate, Range[30]^5, 4] (* or *) LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {1, 36, 381, 2336, 10326, 36552, 110022, 292512, 704847, 1567852}, 30] (* Harvey P. Dale, May 08 2016 *)

STATUS

approved

editing

#45 by Ray Chandler at Mon Jul 13 16:03:46 EDT 2015
STATUS

editing

approved

#44 by Ray Chandler at Mon Jul 13 16:03:34 EDT 2015
LINKS

<a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature(10,-45,120,-210,252,-210,120,-45,10,-1).

(10,-45,120,-210,252,-210,120,-45,10,-1).

STATUS

approved

editing

#43 by Charles R Greathouse IV at Sat Jun 13 00:55:24 EDT 2015
LINKS

<a href="/index/Rec#order_10">Index to sequences with entries for linear recurrences with constant coefficients</a>, signature

Discussion
Sat Jun 13
00:55
OEIS Server: https://oeis.org/edit/global/2439
#42 by Bruno Berselli at Tue Feb 10 11:41:17 EST 2015
STATUS

editing

approved