[go: up one dir, main page]

login
Revision History for A252114 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum equal to 0 2 3 6 or 7 and every 3X3 diagonal and antidiagonal sum not equal to 0 2 3 6 or 7
(history; published version)
#4 by R. H. Hardin at Sun Dec 14 07:34:41 EST 2014
STATUS

editing

approved

#3 by R. H. Hardin at Sun Dec 14 07:34:38 EST 2014
LINKS

R. H. Hardin, <a href="/A252114/b252114.txt">Table of n, a(n) for n = 1..449</a>

#2 by R. H. Hardin at Sun Dec 14 07:34:20 EST 2014
NAME

allocated for R. H. Hardin

T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum equal to 0 2 3 6 or 7 and every 3X3 diagonal and antidiagonal sum not equal to 0 2 3 6 or 7

DATA

1417, 1929, 1929, 1568, 1424, 1568, 1600, 724, 724, 1600, 1884, 584, 554, 584, 1884, 2058, 624, 776, 776, 624, 2058, 2468, 788, 1258, 1314, 1258, 788, 2468, 3149, 1180, 1634, 1956, 1956, 1634, 1180, 3149, 3950, 1668, 2476, 2658, 3528, 2658, 2476, 1668

OFFSET

1,1

COMMENTS

Table starts

.1417.1929.1568..1600..1884...2058...2468....3149....3950....5208.....6792

.1929.1424..724...584...624....788...1180....1668....2472....3888.....5640

.1568..724..554...776..1258...1634...2476....3938....5956....9176....14532

.1600..584..776..1314..1956...2658...4488....7248...10632...17952....28992

.1884..624.1258..1956..3528...6070..11760...21344...39200...80832...147840

.2058..788.1634..2658..6070...9834..17772...38610...70968..132528...284488

.2468.1180.2476..4488.11760..17772..33216...84864..142176..265728...678912

.3149.1668.3938..7248.21344..38610..84864..252160..478368.1145856..3467264

.3950.2472.5956.10632.39200..70968.142176..478368.1017408.2120448..6956288

.5208.3888.9176.17952.80832.132528.265728.1145856.2120448.4251648.18333696

FORMULA

Empirical for column k:

k=1: [linear recurrence of order 25] for n>33

k=2: a(n) = 6*a(n-3) -8*a(n-6) for n>13

k=3: a(n) = 6*a(n-3) -8*a(n-6) for n>11

k=4: a(n) = 4*a(n-3) for n>8

k=5: a(n) = 12*a(n-3) -32*a(n-6) for n>11

k=6: a(n) = 12*a(n-3) -32*a(n-6) for n>11

k=7: a(n) = 8*a(n-3) for n>8

EXAMPLE

Some solutions for n=4 k=4

..3..0..0..3..0..0....3..0..0..3..0..0....2..0..0..3..0..0....0..3..3..0..3..3

..0..1..1..0..1..1....0..1..1..0..1..1....0..1..1..0..1..1....3..2..2..3..2..2

..0..1..1..0..1..1....0..1..1..0..1..1....0..1..1..0..1..1....3..2..2..3..2..2

..3..0..0..2..0..0....3..0..0..2..0..0....2..0..0..2..0..0....1..3..3..1..3..3

..0..1..1..0..1..1....0..1..1..0..1..1....0..1..1..0..1..1....3..2..2..3..2..2

..0..2..1..0..1..1....0..2..1..0..1..2....0..1..1..0..1..1....3..1..2..3..2..2

KEYWORD

allocated

nonn,tabl

AUTHOR

R. H. Hardin, Dec 14 2014

STATUS

approved

editing

#1 by R. H. Hardin at Sun Dec 14 07:25:27 EST 2014
NAME

allocated for R. H. Hardin

KEYWORD

allocated

STATUS

approved